Neural Operator Variational Inference Based on Regularized Stein Discrepancy for Deep Gaussian Processes

Deep Gaussian process (DGP) models offer a powerful nonparametric approach for Bayesian inference, but exact inference is typically intractable, motivating the use of various approximations. However, existing approaches, such as mean-field Gaussian assumptions, limit the expressiveness and efficacy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-08, Vol.PP, p.1-15
Hauptverfasser: Xu, Jian, Du, Shian, Yang, Junmei, Ma, Qianli, Zeng, Delu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!