DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy

Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the atten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-08, Vol.161 (7)
Hauptverfasser: Lehner, Marc T., Katzberger, Paul, Maeder, Niels, Landrum, Gregory A., Riniker, Sereina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Lehner, Marc T.
Katzberger, Paul
Maeder, Niels
Landrum, Gregory A.
Riniker, Sereina
description Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.
doi_str_mv 10.1063/5.0218154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_pubmed_primary_39145551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093175837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-5811a4d57122d93e31c8a6e8d693e7cc5500012bf9b48c19b71b0e330ab9ef403</originalsourceid><addsrcrecordid>eNp90ctKAzEUBuAgiq3VhS8gATcqTM1lMjNxJ_VSoeBCXQ-ZzBk7ZS5tLou-velFEReuQsLHz8l_EDqnZExJwm_FmDCaUREfoCElmYzSRJJDNCThOZIJSQboxNoFIYSmLD5GAy5pLISgQ7R6uH-b4qXpl2BcDfYOP1pXt8rV3SdWrm9rjVVX4rZvQPtGmV8WV6ZvscLlulNb5xx0ru67qFAWSmx9YZ3x2nkDeF6DUUbP16foqFKNhbP9OUIfT4_vk2k0e31-mdzPIs1S7iKRUariUqSUsVJy4FRnKoGsTMIl1VqIzXdYUckizjSVRUoLApwTVUioYsJH6GqXGwZeebAub2uroWlUB723OSeS01RkPA308g9d9N50YbqtYoIlhAV1vVPa9NYaqPKlCU2ZdU5JvtlDLvL9HoK92Cf6ooXyR34XH8DNDlhdO7Up7Z-0L0lpj-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093252602</pqid></control><display><type>article</type><title>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</title><source>AIP Journals Complete</source><creator>Lehner, Marc T. ; Katzberger, Paul ; Maeder, Niels ; Landrum, Gregory A. ; Riniker, Sereina</creator><creatorcontrib>Lehner, Marc T. ; Katzberger, Paul ; Maeder, Niels ; Landrum, Gregory A. ; Riniker, Sereina</creatorcontrib><description>Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0218154</identifier><identifier>PMID: 39145551</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic properties ; Graph neural networks ; Machine learning ; Molecular properties ; Quantum mechanics ; Wave functions</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-5811a4d57122d93e31c8a6e8d693e7cc5500012bf9b48c19b71b0e330ab9ef403</cites><orcidid>0000-0003-4937-4911 ; 0000-0003-1893-4031 ; 0009-0007-8102-3595 ; 0000-0003-4963-4824 ; 0000-0001-6279-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0218154$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39145551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehner, Marc T.</creatorcontrib><creatorcontrib>Katzberger, Paul</creatorcontrib><creatorcontrib>Maeder, Niels</creatorcontrib><creatorcontrib>Landrum, Gregory A.</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><title>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.</description><subject>Atomic properties</subject><subject>Graph neural networks</subject><subject>Machine learning</subject><subject>Molecular properties</subject><subject>Quantum mechanics</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90ctKAzEUBuAgiq3VhS8gATcqTM1lMjNxJ_VSoeBCXQ-ZzBk7ZS5tLou-velFEReuQsLHz8l_EDqnZExJwm_FmDCaUREfoCElmYzSRJJDNCThOZIJSQboxNoFIYSmLD5GAy5pLISgQ7R6uH-b4qXpl2BcDfYOP1pXt8rV3SdWrm9rjVVX4rZvQPtGmV8WV6ZvscLlulNb5xx0ru67qFAWSmx9YZ3x2nkDeF6DUUbP16foqFKNhbP9OUIfT4_vk2k0e31-mdzPIs1S7iKRUariUqSUsVJy4FRnKoGsTMIl1VqIzXdYUckizjSVRUoLApwTVUioYsJH6GqXGwZeebAub2uroWlUB723OSeS01RkPA308g9d9N50YbqtYoIlhAV1vVPa9NYaqPKlCU2ZdU5JvtlDLvL9HoK92Cf6ooXyR34XH8DNDlhdO7Up7Z-0L0lpj-Q</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Lehner, Marc T.</creator><creator>Katzberger, Paul</creator><creator>Maeder, Niels</creator><creator>Landrum, Gregory A.</creator><creator>Riniker, Sereina</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4937-4911</orcidid><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0009-0007-8102-3595</orcidid><orcidid>https://orcid.org/0000-0003-4963-4824</orcidid><orcidid>https://orcid.org/0000-0001-6279-4481</orcidid></search><sort><creationdate>20240821</creationdate><title>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</title><author>Lehner, Marc T. ; Katzberger, Paul ; Maeder, Niels ; Landrum, Gregory A. ; Riniker, Sereina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-5811a4d57122d93e31c8a6e8d693e7cc5500012bf9b48c19b71b0e330ab9ef403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Graph neural networks</topic><topic>Machine learning</topic><topic>Molecular properties</topic><topic>Quantum mechanics</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehner, Marc T.</creatorcontrib><creatorcontrib>Katzberger, Paul</creatorcontrib><creatorcontrib>Maeder, Niels</creatorcontrib><creatorcontrib>Landrum, Gregory A.</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehner, Marc T.</au><au>Katzberger, Paul</au><au>Maeder, Niels</au><au>Landrum, Gregory A.</au><au>Riniker, Sereina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>161</volume><issue>7</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39145551</pmid><doi>10.1063/5.0218154</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4937-4911</orcidid><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0009-0007-8102-3595</orcidid><orcidid>https://orcid.org/0000-0003-4963-4824</orcidid><orcidid>https://orcid.org/0000-0001-6279-4481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-08, Vol.161 (7)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_pubmed_primary_39145551
source AIP Journals Complete
subjects Atomic properties
Graph neural networks
Machine learning
Molecular properties
Quantum mechanics
Wave functions
title DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DASH%20properties:%20Estimating%20atomic%20and%20molecular%20properties%20from%20a%20dynamic%20attention-based%20substructure%20hierarchy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lehner,%20Marc%20T.&rft.date=2024-08-21&rft.volume=161&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0218154&rft_dat=%3Cproquest_cross%3E3093175837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093252602&rft_id=info:pmid/39145551&rfr_iscdi=true