DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy
Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the atten...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-08, Vol.161 (7) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Lehner, Marc T. Katzberger, Paul Maeder, Niels Landrum, Gregory A. Riniker, Sereina |
description | Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available. |
doi_str_mv | 10.1063/5.0218154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_pubmed_primary_39145551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093175837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-5811a4d57122d93e31c8a6e8d693e7cc5500012bf9b48c19b71b0e330ab9ef403</originalsourceid><addsrcrecordid>eNp90ctKAzEUBuAgiq3VhS8gATcqTM1lMjNxJ_VSoeBCXQ-ZzBk7ZS5tLou-velFEReuQsLHz8l_EDqnZExJwm_FmDCaUREfoCElmYzSRJJDNCThOZIJSQboxNoFIYSmLD5GAy5pLISgQ7R6uH-b4qXpl2BcDfYOP1pXt8rV3SdWrm9rjVVX4rZvQPtGmV8WV6ZvscLlulNb5xx0ru67qFAWSmx9YZ3x2nkDeF6DUUbP16foqFKNhbP9OUIfT4_vk2k0e31-mdzPIs1S7iKRUariUqSUsVJy4FRnKoGsTMIl1VqIzXdYUckizjSVRUoLApwTVUioYsJH6GqXGwZeebAub2uroWlUB723OSeS01RkPA308g9d9N50YbqtYoIlhAV1vVPa9NYaqPKlCU2ZdU5JvtlDLvL9HoK92Cf6ooXyR34XH8DNDlhdO7Up7Z-0L0lpj-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093252602</pqid></control><display><type>article</type><title>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</title><source>AIP Journals Complete</source><creator>Lehner, Marc T. ; Katzberger, Paul ; Maeder, Niels ; Landrum, Gregory A. ; Riniker, Sereina</creator><creatorcontrib>Lehner, Marc T. ; Katzberger, Paul ; Maeder, Niels ; Landrum, Gregory A. ; Riniker, Sereina</creatorcontrib><description>Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0218154</identifier><identifier>PMID: 39145551</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic properties ; Graph neural networks ; Machine learning ; Molecular properties ; Quantum mechanics ; Wave functions</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-5811a4d57122d93e31c8a6e8d693e7cc5500012bf9b48c19b71b0e330ab9ef403</cites><orcidid>0000-0003-4937-4911 ; 0000-0003-1893-4031 ; 0009-0007-8102-3595 ; 0000-0003-4963-4824 ; 0000-0001-6279-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0218154$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39145551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehner, Marc T.</creatorcontrib><creatorcontrib>Katzberger, Paul</creatorcontrib><creatorcontrib>Maeder, Niels</creatorcontrib><creatorcontrib>Landrum, Gregory A.</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><title>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.</description><subject>Atomic properties</subject><subject>Graph neural networks</subject><subject>Machine learning</subject><subject>Molecular properties</subject><subject>Quantum mechanics</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90ctKAzEUBuAgiq3VhS8gATcqTM1lMjNxJ_VSoeBCXQ-ZzBk7ZS5tLou-velFEReuQsLHz8l_EDqnZExJwm_FmDCaUREfoCElmYzSRJJDNCThOZIJSQboxNoFIYSmLD5GAy5pLISgQ7R6uH-b4qXpl2BcDfYOP1pXt8rV3SdWrm9rjVVX4rZvQPtGmV8WV6ZvscLlulNb5xx0ru67qFAWSmx9YZ3x2nkDeF6DUUbP16foqFKNhbP9OUIfT4_vk2k0e31-mdzPIs1S7iKRUariUqSUsVJy4FRnKoGsTMIl1VqIzXdYUckizjSVRUoLApwTVUioYsJH6GqXGwZeebAub2uroWlUB723OSeS01RkPA308g9d9N50YbqtYoIlhAV1vVPa9NYaqPKlCU2ZdU5JvtlDLvL9HoK92Cf6ooXyR34XH8DNDlhdO7Up7Z-0L0lpj-Q</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Lehner, Marc T.</creator><creator>Katzberger, Paul</creator><creator>Maeder, Niels</creator><creator>Landrum, Gregory A.</creator><creator>Riniker, Sereina</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4937-4911</orcidid><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0009-0007-8102-3595</orcidid><orcidid>https://orcid.org/0000-0003-4963-4824</orcidid><orcidid>https://orcid.org/0000-0001-6279-4481</orcidid></search><sort><creationdate>20240821</creationdate><title>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</title><author>Lehner, Marc T. ; Katzberger, Paul ; Maeder, Niels ; Landrum, Gregory A. ; Riniker, Sereina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-5811a4d57122d93e31c8a6e8d693e7cc5500012bf9b48c19b71b0e330ab9ef403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic properties</topic><topic>Graph neural networks</topic><topic>Machine learning</topic><topic>Molecular properties</topic><topic>Quantum mechanics</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehner, Marc T.</creatorcontrib><creatorcontrib>Katzberger, Paul</creatorcontrib><creatorcontrib>Maeder, Niels</creatorcontrib><creatorcontrib>Landrum, Gregory A.</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehner, Marc T.</au><au>Katzberger, Paul</au><au>Maeder, Niels</au><au>Landrum, Gregory A.</au><au>Riniker, Sereina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>161</volume><issue>7</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Recently, we presented a method to assign atomic partial charges based on the DASH (dynamic attention-based substructure hierarchy) tree with high efficiency and quantum mechanical (QM)-like accuracy. In addition, the approach can be considered “rule based”—where the rules are derived from the attention values of a graph neural network—and thus, each assignment is fully explainable by visualizing the underlying molecular substructures. In this work, we demonstrate that these hierarchically sorted substructures capture the key features of the local environment of an atom and allow us to predict different atomic properties with high accuracy without building a new DASH tree for each property. The fast prediction of atomic properties in molecules with the DASH tree can, for example, be used as an efficient way to generate feature vectors for machine learning without the need for expensive QM calculations. The final DASH tree with the different atomic properties as well as the complete dataset with wave functions is made freely available.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39145551</pmid><doi>10.1063/5.0218154</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4937-4911</orcidid><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0009-0007-8102-3595</orcidid><orcidid>https://orcid.org/0000-0003-4963-4824</orcidid><orcidid>https://orcid.org/0000-0001-6279-4481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-08, Vol.161 (7) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_39145551 |
source | AIP Journals Complete |
subjects | Atomic properties Graph neural networks Machine learning Molecular properties Quantum mechanics Wave functions |
title | DASH properties: Estimating atomic and molecular properties from a dynamic attention-based substructure hierarchy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DASH%20properties:%20Estimating%20atomic%20and%20molecular%20properties%20from%20a%20dynamic%20attention-based%20substructure%20hierarchy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Lehner,%20Marc%20T.&rft.date=2024-08-21&rft.volume=161&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0218154&rft_dat=%3Cproquest_cross%3E3093175837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093252602&rft_id=info:pmid/39145551&rfr_iscdi=true |