Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm

The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-10, Vol.54 (10), p.5938-5951
Hauptverfasser: Zhuang, Peixian, Li, Jiangyun, Li, Qing, Cai, Lei, Kwong, Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5951
container_issue 10
container_start_page 5938
container_title IEEE transactions on cybernetics
container_volume 54
creator Zhuang, Peixian
Li, Jiangyun
Li, Qing
Cai, Lei
Kwong, Sam
description The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes L_{0} -norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.
doi_str_mv 10.1109/TCYB.2024.3430369
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39106131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10627942</ieee_id><sourcerecordid>3089878319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-e260598c5ec61522ec6841718cdddf04606d71d53fd61fdc678373c7a7efab823</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobsz9AEGkl9505qNNUu_qnB8wVGReeCEhS1KprM1MUtB_b7rNYW7OOTnP-8J5AThFcIIQLC4X07frCYY4m5CMQEKLAzDEiPIUY5Yf7nvKBmDs_SeMj8evgh-DASkQpIigIXi_Mco2a-vrUNs2nflQN3LTvsRF64PrVD9eJWWblF2w_VYlstVJqVTnZDDJo-mcbZPZd3ByAyfP0kldfzQn4KiSK2_GuzoCr7ezxfQ-nT_dPUzLeaowzEJqMIV5wVVuFEU5xrHwDDHElda6ghmFVDOkc1JpiiqtKOOEEcUkM5VcckxG4GLru3b2qzM-iKb2yqxWsjW284LAeHcUoSKiaIsqZ713phJrF092PwJB0Qcr-mBFH6zYBRs15zv7btkYvVf8xRiBsy1QG2P-GVLMigyTX2w0fUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089878319</pqid></control><display><type>article</type><title>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuang, Peixian ; Li, Jiangyun ; Li, Qing ; Cai, Lei ; Kwong, Sam</creator><creatorcontrib>Zhuang, Peixian ; Li, Jiangyun ; Li, Qing ; Cai, Lei ; Kwong, Sam</creatorcontrib><description>The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;L_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2024.3430369</identifier><identifier>PMID: 39106131</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Constrained non-negative matrix factorization (CNMF) ; Data mining ; depth estimation ; Imaging ; neuron extraction ; Neurons ; Scattering ; Sparse approximation ; sparse decomposition ; Videos</subject><ispartof>IEEE transactions on cybernetics, 2024-10, Vol.54 (10), p.5938-5951</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-e260598c5ec61522ec6841718cdddf04606d71d53fd61fdc678373c7a7efab823</cites><orcidid>0000-0003-4811-5854 ; 0000-0002-7143-9569 ; 0000-0003-2288-7901 ; 0000-0001-7484-7261 ; 0000-0002-6361-5008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10627942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10627942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39106131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Li, Jiangyun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Cai, Lei</creatorcontrib><creatorcontrib>Kwong, Sam</creatorcontrib><title>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;L_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.</description><subject>Accuracy</subject><subject>Constrained non-negative matrix factorization (CNMF)</subject><subject>Data mining</subject><subject>depth estimation</subject><subject>Imaging</subject><subject>neuron extraction</subject><subject>Neurons</subject><subject>Scattering</subject><subject>Sparse approximation</subject><subject>sparse decomposition</subject><subject>Videos</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMobsz9AEGkl9505qNNUu_qnB8wVGReeCEhS1KprM1MUtB_b7rNYW7OOTnP-8J5AThFcIIQLC4X07frCYY4m5CMQEKLAzDEiPIUY5Yf7nvKBmDs_SeMj8evgh-DASkQpIigIXi_Mco2a-vrUNs2nflQN3LTvsRF64PrVD9eJWWblF2w_VYlstVJqVTnZDDJo-mcbZPZd3ByAyfP0kldfzQn4KiSK2_GuzoCr7ezxfQ-nT_dPUzLeaowzEJqMIV5wVVuFEU5xrHwDDHElda6ghmFVDOkc1JpiiqtKOOEEcUkM5VcckxG4GLru3b2qzM-iKb2yqxWsjW284LAeHcUoSKiaIsqZ713phJrF092PwJB0Qcr-mBFH6zYBRs15zv7btkYvVf8xRiBsy1QG2P-GVLMigyTX2w0fUc</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhuang, Peixian</creator><creator>Li, Jiangyun</creator><creator>Li, Qing</creator><creator>Cai, Lei</creator><creator>Kwong, Sam</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4811-5854</orcidid><orcidid>https://orcid.org/0000-0002-7143-9569</orcidid><orcidid>https://orcid.org/0000-0003-2288-7901</orcidid><orcidid>https://orcid.org/0000-0001-7484-7261</orcidid><orcidid>https://orcid.org/0000-0002-6361-5008</orcidid></search><sort><creationdate>202410</creationdate><title>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</title><author>Zhuang, Peixian ; Li, Jiangyun ; Li, Qing ; Cai, Lei ; Kwong, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-e260598c5ec61522ec6841718cdddf04606d71d53fd61fdc678373c7a7efab823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Constrained non-negative matrix factorization (CNMF)</topic><topic>Data mining</topic><topic>depth estimation</topic><topic>Imaging</topic><topic>neuron extraction</topic><topic>Neurons</topic><topic>Scattering</topic><topic>Sparse approximation</topic><topic>sparse decomposition</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Li, Jiangyun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Cai, Lei</creatorcontrib><creatorcontrib>Kwong, Sam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuang, Peixian</au><au>Li, Jiangyun</au><au>Li, Qing</au><au>Cai, Lei</au><au>Kwong, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-10</date><risdate>2024</risdate><volume>54</volume><issue>10</issue><spage>5938</spage><epage>5951</epage><pages>5938-5951</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;L_{0} &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39106131</pmid><doi>10.1109/TCYB.2024.3430369</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4811-5854</orcidid><orcidid>https://orcid.org/0000-0002-7143-9569</orcidid><orcidid>https://orcid.org/0000-0003-2288-7901</orcidid><orcidid>https://orcid.org/0000-0001-7484-7261</orcidid><orcidid>https://orcid.org/0000-0002-6361-5008</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-10, Vol.54 (10), p.5938-5951
issn 2168-2267
2168-2275
2168-2275
language eng
recordid cdi_pubmed_primary_39106131
source IEEE Electronic Library (IEL)
subjects Accuracy
Constrained non-negative matrix factorization (CNMF)
Data mining
depth estimation
Imaging
neuron extraction
Neurons
Scattering
Sparse approximation
sparse decomposition
Videos
title Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition-Estimation-Reconstruction:%20An%20Automatic%20and%20Accurate%20Neuron%20Extraction%20Paradigm&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhuang,%20Peixian&rft.date=2024-10&rft.volume=54&rft.issue=10&rft.spage=5938&rft.epage=5951&rft.pages=5938-5951&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2024.3430369&rft_dat=%3Cproquest_RIE%3E3089878319%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089878319&rft_id=info:pmid/39106131&rft_ieee_id=10627942&rfr_iscdi=true