Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm
The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their perform...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2024-10, Vol.54 (10), p.5938-5951 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5951 |
---|---|
container_issue | 10 |
container_start_page | 5938 |
container_title | IEEE transactions on cybernetics |
container_volume | 54 |
creator | Zhuang, Peixian Li, Jiangyun Li, Qing Cai, Lei Kwong, Sam |
description | The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes L_{0} -norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods. |
doi_str_mv | 10.1109/TCYB.2024.3430369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39106131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10627942</ieee_id><sourcerecordid>3089878319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-e260598c5ec61522ec6841718cdddf04606d71d53fd61fdc678373c7a7efab823</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobsz9AEGkl9505qNNUu_qnB8wVGReeCEhS1KprM1MUtB_b7rNYW7OOTnP-8J5AThFcIIQLC4X07frCYY4m5CMQEKLAzDEiPIUY5Yf7nvKBmDs_SeMj8evgh-DASkQpIigIXi_Mco2a-vrUNs2nflQN3LTvsRF64PrVD9eJWWblF2w_VYlstVJqVTnZDDJo-mcbZPZd3ByAyfP0kldfzQn4KiSK2_GuzoCr7ezxfQ-nT_dPUzLeaowzEJqMIV5wVVuFEU5xrHwDDHElda6ghmFVDOkc1JpiiqtKOOEEcUkM5VcckxG4GLru3b2qzM-iKb2yqxWsjW284LAeHcUoSKiaIsqZ713phJrF092PwJB0Qcr-mBFH6zYBRs15zv7btkYvVf8xRiBsy1QG2P-GVLMigyTX2w0fUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089878319</pqid></control><display><type>article</type><title>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuang, Peixian ; Li, Jiangyun ; Li, Qing ; Cai, Lei ; Kwong, Sam</creator><creatorcontrib>Zhuang, Peixian ; Li, Jiangyun ; Li, Qing ; Cai, Lei ; Kwong, Sam</creatorcontrib><description>The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.</description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2024.3430369</identifier><identifier>PMID: 39106131</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Constrained non-negative matrix factorization (CNMF) ; Data mining ; depth estimation ; Imaging ; neuron extraction ; Neurons ; Scattering ; Sparse approximation ; sparse decomposition ; Videos</subject><ispartof>IEEE transactions on cybernetics, 2024-10, Vol.54 (10), p.5938-5951</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-e260598c5ec61522ec6841718cdddf04606d71d53fd61fdc678373c7a7efab823</cites><orcidid>0000-0003-4811-5854 ; 0000-0002-7143-9569 ; 0000-0003-2288-7901 ; 0000-0001-7484-7261 ; 0000-0002-6361-5008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10627942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10627942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39106131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Li, Jiangyun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Cai, Lei</creatorcontrib><creatorcontrib>Kwong, Sam</creatorcontrib><title>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.</description><subject>Accuracy</subject><subject>Constrained non-negative matrix factorization (CNMF)</subject><subject>Data mining</subject><subject>depth estimation</subject><subject>Imaging</subject><subject>neuron extraction</subject><subject>Neurons</subject><subject>Scattering</subject><subject>Sparse approximation</subject><subject>sparse decomposition</subject><subject>Videos</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMobsz9AEGkl9505qNNUu_qnB8wVGReeCEhS1KprM1MUtB_b7rNYW7OOTnP-8J5AThFcIIQLC4X07frCYY4m5CMQEKLAzDEiPIUY5Yf7nvKBmDs_SeMj8evgh-DASkQpIigIXi_Mco2a-vrUNs2nflQN3LTvsRF64PrVD9eJWWblF2w_VYlstVJqVTnZDDJo-mcbZPZd3ByAyfP0kldfzQn4KiSK2_GuzoCr7ezxfQ-nT_dPUzLeaowzEJqMIV5wVVuFEU5xrHwDDHElda6ghmFVDOkc1JpiiqtKOOEEcUkM5VcckxG4GLru3b2qzM-iKb2yqxWsjW284LAeHcUoSKiaIsqZ713phJrF092PwJB0Qcr-mBFH6zYBRs15zv7btkYvVf8xRiBsy1QG2P-GVLMigyTX2w0fUc</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhuang, Peixian</creator><creator>Li, Jiangyun</creator><creator>Li, Qing</creator><creator>Cai, Lei</creator><creator>Kwong, Sam</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4811-5854</orcidid><orcidid>https://orcid.org/0000-0002-7143-9569</orcidid><orcidid>https://orcid.org/0000-0003-2288-7901</orcidid><orcidid>https://orcid.org/0000-0001-7484-7261</orcidid><orcidid>https://orcid.org/0000-0002-6361-5008</orcidid></search><sort><creationdate>202410</creationdate><title>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</title><author>Zhuang, Peixian ; Li, Jiangyun ; Li, Qing ; Cai, Lei ; Kwong, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-e260598c5ec61522ec6841718cdddf04606d71d53fd61fdc678373c7a7efab823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Constrained non-negative matrix factorization (CNMF)</topic><topic>Data mining</topic><topic>depth estimation</topic><topic>Imaging</topic><topic>neuron extraction</topic><topic>Neurons</topic><topic>Scattering</topic><topic>Sparse approximation</topic><topic>sparse decomposition</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Peixian</creatorcontrib><creatorcontrib>Li, Jiangyun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Cai, Lei</creatorcontrib><creatorcontrib>Kwong, Sam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuang, Peixian</au><au>Li, Jiangyun</au><au>Li, Qing</au><au>Cai, Lei</au><au>Kwong, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-10</date><risdate>2024</risdate><volume>54</volume><issue>10</issue><spage>5938</spage><epage>5951</epage><pages>5938-5951</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The extraction of spatiotemporal neuron activity from calcium imaging videos plays a crucial role in unraveling the coding properties of neurons. While existing neuron extraction approaches have shown promising results, disturbing and scattering background and unused depth still impede their performance. To address these limitations, we develop an automatic and accurate neuron extraction paradigm, dubbed as decomposition-estimation-reconstruction (DER), consisting of D-procedure, E-procedure, and R-procedure. Specifically, the D-procedure first decomposes the raw data into a low-rank background and a sparse neuron signal, and regularizes <inline-formula> <tex-math notation="LaTeX">L_{0} </tex-math></inline-formula>-norm priors of intensity and gradient of the neuron signal to suppress blurring and artifact effects. Then, the E-procedure estimates the depth-dependent transmission of the neuron signal based on its bright and dark channel priors. The R-procedure finally integrates the depth estimation of the neuron signal as a content-importance weight into a constrained non-negative matrix decomposition framework, which facilitates accurate neuron locations to boost the quality of extracted neurons. These three procedures are coupled in a cascade manner, where the former copes with calcium imaging data to facilitate the subsequent one. Comprehensive experiments on neuron extraction from calcium imaging videos demonstrate the superiority of our DER paradigm in both qualitative results and quantitative assessments over state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39106131</pmid><doi>10.1109/TCYB.2024.3430369</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4811-5854</orcidid><orcidid>https://orcid.org/0000-0002-7143-9569</orcidid><orcidid>https://orcid.org/0000-0003-2288-7901</orcidid><orcidid>https://orcid.org/0000-0001-7484-7261</orcidid><orcidid>https://orcid.org/0000-0002-6361-5008</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2024-10, Vol.54 (10), p.5938-5951 |
issn | 2168-2267 2168-2275 2168-2275 |
language | eng |
recordid | cdi_pubmed_primary_39106131 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Constrained non-negative matrix factorization (CNMF) Data mining depth estimation Imaging neuron extraction Neurons Scattering Sparse approximation sparse decomposition Videos |
title | Decomposition-Estimation-Reconstruction: An Automatic and Accurate Neuron Extraction Paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition-Estimation-Reconstruction:%20An%20Automatic%20and%20Accurate%20Neuron%20Extraction%20Paradigm&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhuang,%20Peixian&rft.date=2024-10&rft.volume=54&rft.issue=10&rft.spage=5938&rft.epage=5951&rft.pages=5938-5951&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2024.3430369&rft_dat=%3Cproquest_RIE%3E3089878319%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089878319&rft_id=info:pmid/39106131&rft_ieee_id=10627942&rfr_iscdi=true |