MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial

Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2023-08, Vol.28 (4), p.1-6
Hauptverfasser: Gunderman, Anthony L., Schmidt, Ehud J., Xiao, Qingyu, Tokuda, Junichi, Seethamraju, Ravi T., Neri, Luca, Halperin, Henry R., Kut, Carmen, Viswanathan, Akila N., Morcos, Marc, Chen, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 4
container_start_page 1
container_title IEEE/ASME transactions on mechatronics
container_volume 28
creator Gunderman, Anthony L.
Schmidt, Ehud J.
Xiao, Qingyu
Tokuda, Junichi
Seethamraju, Ravi T.
Neri, Luca
Halperin, Henry R.
Kut, Carmen
Viswanathan, Akila N.
Morcos, Marc
Chen, Yue
description Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 \pm {\bm{\ }}2 mm anterior-posterior.
doi_str_mv 10.1109/TMECH.2022.3232546
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39104914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10017443</ieee_id><sourcerecordid>2851334064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</originalsourceid><addsrcrecordid>eNpdkdFq2zAUhsXoWLu2LzBKMexmF3V6jiTbUm9GydI10G5QsrE7IcvHrYIjd1Y82NtPabLS7UqC_zs_R_oYe4cwQQR9vridTa8nHDifCC54IctX7AC1xBxQ_thLd1Ail1IU--xtjEsAkAj4hu0LjSA1ygP2_fZunk_70Pi174PtsplzFNaDd_lirCmbhyW5TZR9IWo6usg-UfT34Sy7snWi7CY7y2xossvgV6lgMXjbHbHXre0iHe_OQ_btaraYXuc3Xz_Pp5c3uZOg1rnQjSq4dSQr2VRCQV2qumpVocFWnLcosbKo66K1TrSibCoOtVVclQ3JVoI4ZB-3vY9jvaLmaXXbmcchrTL8Nr315t8k-Adz3_8yiFxrpXRq-LBrGPqfI8W1WfnoqOtsoH6MRoDSBQopqoS-_w9d9uOQPi0arhIjJJQyUXxLuaGPcaD2eRsEs_FmnryZjTez85aGTl--43nkr6gEnGwBT0QvGgGrJFj8AVsNmz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851334064</pqid></control><display><type>article</type><title>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</title><source>IEEE Electronic Library (IEL)</source><creator>Gunderman, Anthony L. ; Schmidt, Ehud J. ; Xiao, Qingyu ; Tokuda, Junichi ; Seethamraju, Ravi T. ; Neri, Luca ; Halperin, Henry R. ; Kut, Carmen ; Viswanathan, Akila N. ; Morcos, Marc ; Chen, Yue</creator><creatorcontrib>Gunderman, Anthony L. ; Schmidt, Ehud J. ; Xiao, Qingyu ; Tokuda, Junichi ; Seethamraju, Ravi T. ; Neri, Luca ; Halperin, Henry R. ; Kut, Carmen ; Viswanathan, Akila N. ; Morcos, Marc ; Chen, Yue</creatorcontrib><description>Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt; \pm {\bm{\ }}&lt;/tex-math&gt;&lt;/inline-formula&gt;2 mm anterior-posterior.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2022.3232546</identifier><identifier>PMID: 39104914</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active tracking ; Biocompatibility ; Coils ; Electron tubes ; Hydrogels ; injection needle ; Magnetic resonance imaging ; magnetic resonance imaging (MRI)-conditional ; Needles ; Radiation ; Radiation damage ; Radiation dosage ; Radiation therapy ; Real-time systems ; Tracking devices ; Trajectory ; Tumors</subject><ispartof>IEEE/ASME transactions on mechatronics, 2023-08, Vol.28 (4), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</citedby><cites>FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</cites><orcidid>0000-0003-1350-4972 ; 0000-0002-5002-2000 ; 0000-0002-5792-2087 ; 0000-0002-8554-2970 ; 0000-0002-2719-6854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10017443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10017443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39104914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunderman, Anthony L.</creatorcontrib><creatorcontrib>Schmidt, Ehud J.</creatorcontrib><creatorcontrib>Xiao, Qingyu</creatorcontrib><creatorcontrib>Tokuda, Junichi</creatorcontrib><creatorcontrib>Seethamraju, Ravi T.</creatorcontrib><creatorcontrib>Neri, Luca</creatorcontrib><creatorcontrib>Halperin, Henry R.</creatorcontrib><creatorcontrib>Kut, Carmen</creatorcontrib><creatorcontrib>Viswanathan, Akila N.</creatorcontrib><creatorcontrib>Morcos, Marc</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><title>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><addtitle>IEEE ASME Trans Mechatron</addtitle><description>Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt; \pm {\bm{\ }}&lt;/tex-math&gt;&lt;/inline-formula&gt;2 mm anterior-posterior.</description><subject>Active tracking</subject><subject>Biocompatibility</subject><subject>Coils</subject><subject>Electron tubes</subject><subject>Hydrogels</subject><subject>injection needle</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)-conditional</subject><subject>Needles</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>Radiation therapy</subject><subject>Real-time systems</subject><subject>Tracking devices</subject><subject>Trajectory</subject><subject>Tumors</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkdFq2zAUhsXoWLu2LzBKMexmF3V6jiTbUm9GydI10G5QsrE7IcvHrYIjd1Y82NtPabLS7UqC_zs_R_oYe4cwQQR9vridTa8nHDifCC54IctX7AC1xBxQ_thLd1Ail1IU--xtjEsAkAj4hu0LjSA1ygP2_fZunk_70Pi174PtsplzFNaDd_lirCmbhyW5TZR9IWo6usg-UfT34Sy7snWi7CY7y2xossvgV6lgMXjbHbHXre0iHe_OQ_btaraYXuc3Xz_Pp5c3uZOg1rnQjSq4dSQr2VRCQV2qumpVocFWnLcosbKo66K1TrSibCoOtVVclQ3JVoI4ZB-3vY9jvaLmaXXbmcchrTL8Nr315t8k-Adz3_8yiFxrpXRq-LBrGPqfI8W1WfnoqOtsoH6MRoDSBQopqoS-_w9d9uOQPi0arhIjJJQyUXxLuaGPcaD2eRsEs_FmnryZjTez85aGTl--43nkr6gEnGwBT0QvGgGrJFj8AVsNmz4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gunderman, Anthony L.</creator><creator>Schmidt, Ehud J.</creator><creator>Xiao, Qingyu</creator><creator>Tokuda, Junichi</creator><creator>Seethamraju, Ravi T.</creator><creator>Neri, Luca</creator><creator>Halperin, Henry R.</creator><creator>Kut, Carmen</creator><creator>Viswanathan, Akila N.</creator><creator>Morcos, Marc</creator><creator>Chen, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1350-4972</orcidid><orcidid>https://orcid.org/0000-0002-5002-2000</orcidid><orcidid>https://orcid.org/0000-0002-5792-2087</orcidid><orcidid>https://orcid.org/0000-0002-8554-2970</orcidid><orcidid>https://orcid.org/0000-0002-2719-6854</orcidid></search><sort><creationdate>20230801</creationdate><title>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</title><author>Gunderman, Anthony L. ; Schmidt, Ehud J. ; Xiao, Qingyu ; Tokuda, Junichi ; Seethamraju, Ravi T. ; Neri, Luca ; Halperin, Henry R. ; Kut, Carmen ; Viswanathan, Akila N. ; Morcos, Marc ; Chen, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active tracking</topic><topic>Biocompatibility</topic><topic>Coils</topic><topic>Electron tubes</topic><topic>Hydrogels</topic><topic>injection needle</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)-conditional</topic><topic>Needles</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>Radiation therapy</topic><topic>Real-time systems</topic><topic>Tracking devices</topic><topic>Trajectory</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunderman, Anthony L.</creatorcontrib><creatorcontrib>Schmidt, Ehud J.</creatorcontrib><creatorcontrib>Xiao, Qingyu</creatorcontrib><creatorcontrib>Tokuda, Junichi</creatorcontrib><creatorcontrib>Seethamraju, Ravi T.</creatorcontrib><creatorcontrib>Neri, Luca</creatorcontrib><creatorcontrib>Halperin, Henry R.</creatorcontrib><creatorcontrib>Kut, Carmen</creatorcontrib><creatorcontrib>Viswanathan, Akila N.</creatorcontrib><creatorcontrib>Morcos, Marc</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gunderman, Anthony L.</au><au>Schmidt, Ehud J.</au><au>Xiao, Qingyu</au><au>Tokuda, Junichi</au><au>Seethamraju, Ravi T.</au><au>Neri, Luca</au><au>Halperin, Henry R.</au><au>Kut, Carmen</au><au>Viswanathan, Akila N.</au><au>Morcos, Marc</au><au>Chen, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><addtitle>IEEE ASME Trans Mechatron</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt; \pm {\bm{\ }}&lt;/tex-math&gt;&lt;/inline-formula&gt;2 mm anterior-posterior.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39104914</pmid><doi>10.1109/TMECH.2022.3232546</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1350-4972</orcidid><orcidid>https://orcid.org/0000-0002-5002-2000</orcidid><orcidid>https://orcid.org/0000-0002-5792-2087</orcidid><orcidid>https://orcid.org/0000-0002-8554-2970</orcidid><orcidid>https://orcid.org/0000-0002-2719-6854</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2023-08, Vol.28 (4), p.1-6
issn 1083-4435
1941-014X
language eng
recordid cdi_pubmed_primary_39104914
source IEEE Electronic Library (IEL)
subjects Active tracking
Biocompatibility
Coils
Electron tubes
Hydrogels
injection needle
Magnetic resonance imaging
magnetic resonance imaging (MRI)-conditional
Needles
Radiation
Radiation damage
Radiation dosage
Radiation therapy
Real-time systems
Tracking devices
Trajectory
Tumors
title MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-Conditional%20Eccentric-Tube%20Injection%20Needle:%20Design,%20Fabrication,%20and%20Animal%20Trial&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Gunderman,%20Anthony%20L.&rft.date=2023-08-01&rft.volume=28&rft.issue=4&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2022.3232546&rft_dat=%3Cproquest_RIE%3E2851334064%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851334064&rft_id=info:pmid/39104914&rft_ieee_id=10017443&rfr_iscdi=true