MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial
Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompati...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2023-08, Vol.28 (4), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 28 |
creator | Gunderman, Anthony L. Schmidt, Ehud J. Xiao, Qingyu Tokuda, Junichi Seethamraju, Ravi T. Neri, Luca Halperin, Henry R. Kut, Carmen Viswanathan, Akila N. Morcos, Marc Chen, Yue |
description | Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 \pm {\bm{\ }}2 mm anterior-posterior. |
doi_str_mv | 10.1109/TMECH.2022.3232546 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39104914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10017443</ieee_id><sourcerecordid>2851334064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</originalsourceid><addsrcrecordid>eNpdkdFq2zAUhsXoWLu2LzBKMexmF3V6jiTbUm9GydI10G5QsrE7IcvHrYIjd1Y82NtPabLS7UqC_zs_R_oYe4cwQQR9vridTa8nHDifCC54IctX7AC1xBxQ_thLd1Ail1IU--xtjEsAkAj4hu0LjSA1ygP2_fZunk_70Pi174PtsplzFNaDd_lirCmbhyW5TZR9IWo6usg-UfT34Sy7snWi7CY7y2xossvgV6lgMXjbHbHXre0iHe_OQ_btaraYXuc3Xz_Pp5c3uZOg1rnQjSq4dSQr2VRCQV2qumpVocFWnLcosbKo66K1TrSibCoOtVVclQ3JVoI4ZB-3vY9jvaLmaXXbmcchrTL8Nr315t8k-Adz3_8yiFxrpXRq-LBrGPqfI8W1WfnoqOtsoH6MRoDSBQopqoS-_w9d9uOQPi0arhIjJJQyUXxLuaGPcaD2eRsEs_FmnryZjTez85aGTl--43nkr6gEnGwBT0QvGgGrJFj8AVsNmz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851334064</pqid></control><display><type>article</type><title>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</title><source>IEEE Electronic Library (IEL)</source><creator>Gunderman, Anthony L. ; Schmidt, Ehud J. ; Xiao, Qingyu ; Tokuda, Junichi ; Seethamraju, Ravi T. ; Neri, Luca ; Halperin, Henry R. ; Kut, Carmen ; Viswanathan, Akila N. ; Morcos, Marc ; Chen, Yue</creator><creatorcontrib>Gunderman, Anthony L. ; Schmidt, Ehud J. ; Xiao, Qingyu ; Tokuda, Junichi ; Seethamraju, Ravi T. ; Neri, Luca ; Halperin, Henry R. ; Kut, Carmen ; Viswanathan, Akila N. ; Morcos, Marc ; Chen, Yue</creatorcontrib><description>Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 <inline-formula><tex-math notation="LaTeX"> \pm {\bm{\ }}</tex-math></inline-formula>2 mm anterior-posterior.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2022.3232546</identifier><identifier>PMID: 39104914</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active tracking ; Biocompatibility ; Coils ; Electron tubes ; Hydrogels ; injection needle ; Magnetic resonance imaging ; magnetic resonance imaging (MRI)-conditional ; Needles ; Radiation ; Radiation damage ; Radiation dosage ; Radiation therapy ; Real-time systems ; Tracking devices ; Trajectory ; Tumors</subject><ispartof>IEEE/ASME transactions on mechatronics, 2023-08, Vol.28 (4), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</citedby><cites>FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</cites><orcidid>0000-0003-1350-4972 ; 0000-0002-5002-2000 ; 0000-0002-5792-2087 ; 0000-0002-8554-2970 ; 0000-0002-2719-6854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10017443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10017443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39104914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gunderman, Anthony L.</creatorcontrib><creatorcontrib>Schmidt, Ehud J.</creatorcontrib><creatorcontrib>Xiao, Qingyu</creatorcontrib><creatorcontrib>Tokuda, Junichi</creatorcontrib><creatorcontrib>Seethamraju, Ravi T.</creatorcontrib><creatorcontrib>Neri, Luca</creatorcontrib><creatorcontrib>Halperin, Henry R.</creatorcontrib><creatorcontrib>Kut, Carmen</creatorcontrib><creatorcontrib>Viswanathan, Akila N.</creatorcontrib><creatorcontrib>Morcos, Marc</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><title>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><addtitle>IEEE ASME Trans Mechatron</addtitle><description>Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 <inline-formula><tex-math notation="LaTeX"> \pm {\bm{\ }}</tex-math></inline-formula>2 mm anterior-posterior.</description><subject>Active tracking</subject><subject>Biocompatibility</subject><subject>Coils</subject><subject>Electron tubes</subject><subject>Hydrogels</subject><subject>injection needle</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)-conditional</subject><subject>Needles</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>Radiation therapy</subject><subject>Real-time systems</subject><subject>Tracking devices</subject><subject>Trajectory</subject><subject>Tumors</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkdFq2zAUhsXoWLu2LzBKMexmF3V6jiTbUm9GydI10G5QsrE7IcvHrYIjd1Y82NtPabLS7UqC_zs_R_oYe4cwQQR9vridTa8nHDifCC54IctX7AC1xBxQ_thLd1Ail1IU--xtjEsAkAj4hu0LjSA1ygP2_fZunk_70Pi174PtsplzFNaDd_lirCmbhyW5TZR9IWo6usg-UfT34Sy7snWi7CY7y2xossvgV6lgMXjbHbHXre0iHe_OQ_btaraYXuc3Xz_Pp5c3uZOg1rnQjSq4dSQr2VRCQV2qumpVocFWnLcosbKo66K1TrSibCoOtVVclQ3JVoI4ZB-3vY9jvaLmaXXbmcchrTL8Nr315t8k-Adz3_8yiFxrpXRq-LBrGPqfI8W1WfnoqOtsoH6MRoDSBQopqoS-_w9d9uOQPi0arhIjJJQyUXxLuaGPcaD2eRsEs_FmnryZjTez85aGTl--43nkr6gEnGwBT0QvGgGrJFj8AVsNmz4</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gunderman, Anthony L.</creator><creator>Schmidt, Ehud J.</creator><creator>Xiao, Qingyu</creator><creator>Tokuda, Junichi</creator><creator>Seethamraju, Ravi T.</creator><creator>Neri, Luca</creator><creator>Halperin, Henry R.</creator><creator>Kut, Carmen</creator><creator>Viswanathan, Akila N.</creator><creator>Morcos, Marc</creator><creator>Chen, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1350-4972</orcidid><orcidid>https://orcid.org/0000-0002-5002-2000</orcidid><orcidid>https://orcid.org/0000-0002-5792-2087</orcidid><orcidid>https://orcid.org/0000-0002-8554-2970</orcidid><orcidid>https://orcid.org/0000-0002-2719-6854</orcidid></search><sort><creationdate>20230801</creationdate><title>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</title><author>Gunderman, Anthony L. ; Schmidt, Ehud J. ; Xiao, Qingyu ; Tokuda, Junichi ; Seethamraju, Ravi T. ; Neri, Luca ; Halperin, Henry R. ; Kut, Carmen ; Viswanathan, Akila N. ; Morcos, Marc ; Chen, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-39d852ace474d7380b68b7f8590a722f1417a19b5fac3f36d720ba8286de4f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active tracking</topic><topic>Biocompatibility</topic><topic>Coils</topic><topic>Electron tubes</topic><topic>Hydrogels</topic><topic>injection needle</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)-conditional</topic><topic>Needles</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>Radiation therapy</topic><topic>Real-time systems</topic><topic>Tracking devices</topic><topic>Trajectory</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunderman, Anthony L.</creatorcontrib><creatorcontrib>Schmidt, Ehud J.</creatorcontrib><creatorcontrib>Xiao, Qingyu</creatorcontrib><creatorcontrib>Tokuda, Junichi</creatorcontrib><creatorcontrib>Seethamraju, Ravi T.</creatorcontrib><creatorcontrib>Neri, Luca</creatorcontrib><creatorcontrib>Halperin, Henry R.</creatorcontrib><creatorcontrib>Kut, Carmen</creatorcontrib><creatorcontrib>Viswanathan, Akila N.</creatorcontrib><creatorcontrib>Morcos, Marc</creatorcontrib><creatorcontrib>Chen, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gunderman, Anthony L.</au><au>Schmidt, Ehud J.</au><au>Xiao, Qingyu</au><au>Tokuda, Junichi</au><au>Seethamraju, Ravi T.</au><au>Neri, Luca</au><au>Halperin, Henry R.</au><au>Kut, Carmen</au><au>Viswanathan, Akila N.</au><au>Morcos, Marc</au><au>Chen, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><addtitle>IEEE ASME Trans Mechatron</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>28</volume><issue>4</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Effective radiation therapy aims to maximize the radiation dose delivered to the tumor, while minimizing damage to the surrounding healthy tissues, which can be a challenging task when the tissue-tumor space is small. To eliminate the damage to healthy tissue, it is now possible to inject biocompatible hydrogels between cancerous targets and surrounding tissues to create a spacer pocket. Conventional methods have limitations in poor target visualization and device tracking. In this article, we leverage our MR-tracking technique to develop a novel injection needle for hydrogel spacer deployment. Herein, we present the working principle and fabrication method, followed by benchtop validation in an agar phantom, and magnetic resonance imaging (MRI)-guided validation in tissue-mimic prostate phantom and sexually mature female swine. Animal trials indicated that the spacer pockets in the rectovaginal septum can be accurately visualized on T2-weighted MRI. The experimental results showed that the vaginal-rectal spacing was successfully increased by 12 <inline-formula><tex-math notation="LaTeX"> \pm {\bm{\ }}</tex-math></inline-formula>2 mm anterior-posterior.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39104914</pmid><doi>10.1109/TMECH.2022.3232546</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1350-4972</orcidid><orcidid>https://orcid.org/0000-0002-5002-2000</orcidid><orcidid>https://orcid.org/0000-0002-5792-2087</orcidid><orcidid>https://orcid.org/0000-0002-8554-2970</orcidid><orcidid>https://orcid.org/0000-0002-2719-6854</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2023-08, Vol.28 (4), p.1-6 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_pubmed_primary_39104914 |
source | IEEE Electronic Library (IEL) |
subjects | Active tracking Biocompatibility Coils Electron tubes Hydrogels injection needle Magnetic resonance imaging magnetic resonance imaging (MRI)-conditional Needles Radiation Radiation damage Radiation dosage Radiation therapy Real-time systems Tracking devices Trajectory Tumors |
title | MRI-Conditional Eccentric-Tube Injection Needle: Design, Fabrication, and Animal Trial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-Conditional%20Eccentric-Tube%20Injection%20Needle:%20Design,%20Fabrication,%20and%20Animal%20Trial&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Gunderman,%20Anthony%20L.&rft.date=2023-08-01&rft.volume=28&rft.issue=4&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2022.3232546&rft_dat=%3Cproquest_RIE%3E2851334064%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851334064&rft_id=info:pmid/39104914&rft_ieee_id=10017443&rfr_iscdi=true |