Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds

Background: Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. Aims: A machine learning (ML) model was developed for the in silico screening of low molecular weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2024-11, Vol.21 (6), p.1911-1921
Hauptverfasser: Shehadeh, Fadi, Felix, LewisOscar, Kalligeros, Markos, Shehadeh, Adnan, Fuchs, Beth Burgwyn, Ausubel, Frederick M., Sotiriadis, Paul P., Mylonakis, Eleftherios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1921
container_issue 6
container_start_page 1911
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 21
creator Shehadeh, Fadi
Felix, LewisOscar
Kalligeros, Markos
Shehadeh, Adnan
Fuchs, Beth Burgwyn
Ausubel, Frederick M.
Sotiriadis, Paul P.
Mylonakis, Eleftherios
description Background: Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. Aims: A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules. Methods: We used the results of a high-throughput Caenorhabditis elegans methicillin-resistant Staphylococcus aureus (MRSA) liquid infection assay to develop ML models for compound prioritization and quality control. Results: The compound prioritization model achieved an AUC of 0.795 with a sensitivity of 81% and a specificity of 70%. When applied to a validation set of 22,768 compounds, the model identified 81% of the active compounds identified by high-throughput screening (HTS) among only 30.6% of the total 22,768 compounds, resulting in a 2.67-fold increase in hit rate. When we retrained the model on all the compounds of the HTS dataset, it further identified 45 discordant molecules classified as non-hits by the HTS, with 42/45 (93%) having known antimicrobial activity. Conclusion: Our ML approach can be used to increase HTS efficiency by reducing the number of compounds that need to be physically screened and identifying potential missed hits, making HTS more accessible and reducing barriers to entry.
doi_str_mv 10.1109/TCBB.2024.3434340
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39058605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10609973</ieee_id><sourcerecordid>3085113775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1555-438ac01031ccc420faa6dec26e91204d4f9506d8e8e511ab4c46357e5d03bbd53</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRrFZ_gCCSo5fU2exHssc2qBVbBFvPYbOZNJHmw93k4L83oVVkDjOH530ZHkJuKMwoBfWwjReLWQABnzE-DpyQCypE6Csl-el4c-ELJdmEXDr3CQOpgJ-TCVMgIgnigryutSnKGr0ValuX9c6fO1e6DjNvWe4Kf1vYpt8Vbd95G2MRR8TLG-vN66701--buRc3Vdv0deauyFmu9w6vj3tKPp4et_HSX709v8TzlW-G54TPWaQNUGDUGMMDyLWWGZpAoqIB8IznSoDMIoxQUKpTbrhkIkSRAUvTTLApuT_0trb56tF1SVU6g_u9rrHpXcIgGoIsDEeUHlBjG-cs5klry0rb74RCMjpMRofJ6DA5Ohwyd8f6Pq0w-0v8ShuA2wNQIuK_QglKhYz9AKLcdHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085113775</pqid></control><display><type>article</type><title>Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds</title><source>IEEE Electronic Library (IEL)</source><creator>Shehadeh, Fadi ; Felix, LewisOscar ; Kalligeros, Markos ; Shehadeh, Adnan ; Fuchs, Beth Burgwyn ; Ausubel, Frederick M. ; Sotiriadis, Paul P. ; Mylonakis, Eleftherios</creator><creatorcontrib>Shehadeh, Fadi ; Felix, LewisOscar ; Kalligeros, Markos ; Shehadeh, Adnan ; Fuchs, Beth Burgwyn ; Ausubel, Frederick M. ; Sotiriadis, Paul P. ; Mylonakis, Eleftherios</creatorcontrib><description>Background: Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. Aims: A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules. Methods: We used the results of a high-throughput Caenorhabditis elegans methicillin-resistant Staphylococcus aureus (MRSA) liquid infection assay to develop ML models for compound prioritization and quality control. Results: The compound prioritization model achieved an AUC of 0.795 with a sensitivity of 81% and a specificity of 70%. When applied to a validation set of 22,768 compounds, the model identified 81% of the active compounds identified by high-throughput screening (HTS) among only 30.6% of the total 22,768 compounds, resulting in a 2.67-fold increase in hit rate. When we retrained the model on all the compounds of the HTS dataset, it further identified 45 discordant molecules classified as non-hits by the HTS, with 42/45 (93%) having known antimicrobial activity. Conclusion: Our ML approach can be used to increase HTS efficiency by reducing the number of compounds that need to be physically screened and identifying potential missed hits, making HTS more accessible and reducing barriers to entry.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2024.3434340</identifier><identifier>PMID: 39058605</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in silico screening ; Antimicrobial drug resistance ; Compounds ; Data models ; Grippers ; High-temperature superconductors ; high-throughput screening ; Libraries ; machine learning ; Random forests ; Training</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2024-11, Vol.21 (6), p.1911-1921</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1555-438ac01031ccc420faa6dec26e91204d4f9506d8e8e511ab4c46357e5d03bbd53</cites><orcidid>0000-0001-6030-4645 ; 0000-0002-6927-8460 ; 0000-0002-9552-4004 ; 0000-0002-8077-9776 ; 0000-0002-4624-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10609973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10609973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39058605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shehadeh, Fadi</creatorcontrib><creatorcontrib>Felix, LewisOscar</creatorcontrib><creatorcontrib>Kalligeros, Markos</creatorcontrib><creatorcontrib>Shehadeh, Adnan</creatorcontrib><creatorcontrib>Fuchs, Beth Burgwyn</creatorcontrib><creatorcontrib>Ausubel, Frederick M.</creatorcontrib><creatorcontrib>Sotiriadis, Paul P.</creatorcontrib><creatorcontrib>Mylonakis, Eleftherios</creatorcontrib><title>Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Background: Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. Aims: A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules. Methods: We used the results of a high-throughput Caenorhabditis elegans methicillin-resistant Staphylococcus aureus (MRSA) liquid infection assay to develop ML models for compound prioritization and quality control. Results: The compound prioritization model achieved an AUC of 0.795 with a sensitivity of 81% and a specificity of 70%. When applied to a validation set of 22,768 compounds, the model identified 81% of the active compounds identified by high-throughput screening (HTS) among only 30.6% of the total 22,768 compounds, resulting in a 2.67-fold increase in hit rate. When we retrained the model on all the compounds of the HTS dataset, it further identified 45 discordant molecules classified as non-hits by the HTS, with 42/45 (93%) having known antimicrobial activity. Conclusion: Our ML approach can be used to increase HTS efficiency by reducing the number of compounds that need to be physically screened and identifying potential missed hits, making HTS more accessible and reducing barriers to entry.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in silico screening</subject><subject>Antimicrobial drug resistance</subject><subject>Compounds</subject><subject>Data models</subject><subject>Grippers</subject><subject>High-temperature superconductors</subject><subject>high-throughput screening</subject><subject>Libraries</subject><subject>machine learning</subject><subject>Random forests</subject><subject>Training</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRrFZ_gCCSo5fU2exHssc2qBVbBFvPYbOZNJHmw93k4L83oVVkDjOH530ZHkJuKMwoBfWwjReLWQABnzE-DpyQCypE6Csl-el4c-ELJdmEXDr3CQOpgJ-TCVMgIgnigryutSnKGr0ValuX9c6fO1e6DjNvWe4Kf1vYpt8Vbd95G2MRR8TLG-vN66701--buRc3Vdv0deauyFmu9w6vj3tKPp4et_HSX709v8TzlW-G54TPWaQNUGDUGMMDyLWWGZpAoqIB8IznSoDMIoxQUKpTbrhkIkSRAUvTTLApuT_0trb56tF1SVU6g_u9rrHpXcIgGoIsDEeUHlBjG-cs5klry0rb74RCMjpMRofJ6DA5Ohwyd8f6Pq0w-0v8ShuA2wNQIuK_QglKhYz9AKLcdHk</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Shehadeh, Fadi</creator><creator>Felix, LewisOscar</creator><creator>Kalligeros, Markos</creator><creator>Shehadeh, Adnan</creator><creator>Fuchs, Beth Burgwyn</creator><creator>Ausubel, Frederick M.</creator><creator>Sotiriadis, Paul P.</creator><creator>Mylonakis, Eleftherios</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6030-4645</orcidid><orcidid>https://orcid.org/0000-0002-6927-8460</orcidid><orcidid>https://orcid.org/0000-0002-9552-4004</orcidid><orcidid>https://orcid.org/0000-0002-8077-9776</orcidid><orcidid>https://orcid.org/0000-0002-4624-0777</orcidid></search><sort><creationdate>20241101</creationdate><title>Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds</title><author>Shehadeh, Fadi ; Felix, LewisOscar ; Kalligeros, Markos ; Shehadeh, Adnan ; Fuchs, Beth Burgwyn ; Ausubel, Frederick M. ; Sotiriadis, Paul P. ; Mylonakis, Eleftherios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1555-438ac01031ccc420faa6dec26e91204d4f9506d8e8e511ab4c46357e5d03bbd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in silico screening</topic><topic>Antimicrobial drug resistance</topic><topic>Compounds</topic><topic>Data models</topic><topic>Grippers</topic><topic>High-temperature superconductors</topic><topic>high-throughput screening</topic><topic>Libraries</topic><topic>machine learning</topic><topic>Random forests</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shehadeh, Fadi</creatorcontrib><creatorcontrib>Felix, LewisOscar</creatorcontrib><creatorcontrib>Kalligeros, Markos</creatorcontrib><creatorcontrib>Shehadeh, Adnan</creatorcontrib><creatorcontrib>Fuchs, Beth Burgwyn</creatorcontrib><creatorcontrib>Ausubel, Frederick M.</creatorcontrib><creatorcontrib>Sotiriadis, Paul P.</creatorcontrib><creatorcontrib>Mylonakis, Eleftherios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shehadeh, Fadi</au><au>Felix, LewisOscar</au><au>Kalligeros, Markos</au><au>Shehadeh, Adnan</au><au>Fuchs, Beth Burgwyn</au><au>Ausubel, Frederick M.</au><au>Sotiriadis, Paul P.</au><au>Mylonakis, Eleftherios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>1911</spage><epage>1921</epage><pages>1911-1921</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Background: Antimicrobial resistance is a major public health threat, and new agents are needed. Computational approaches have been proposed to reduce the cost and time needed for compound screening. Aims: A machine learning (ML) model was developed for the in silico screening of low molecular weight molecules. Methods: We used the results of a high-throughput Caenorhabditis elegans methicillin-resistant Staphylococcus aureus (MRSA) liquid infection assay to develop ML models for compound prioritization and quality control. Results: The compound prioritization model achieved an AUC of 0.795 with a sensitivity of 81% and a specificity of 70%. When applied to a validation set of 22,768 compounds, the model identified 81% of the active compounds identified by high-throughput screening (HTS) among only 30.6% of the total 22,768 compounds, resulting in a 2.67-fold increase in hit rate. When we retrained the model on all the compounds of the HTS dataset, it further identified 45 discordant molecules classified as non-hits by the HTS, with 42/45 (93%) having known antimicrobial activity. Conclusion: Our ML approach can be used to increase HTS efficiency by reducing the number of compounds that need to be physically screened and identifying potential missed hits, making HTS more accessible and reducing barriers to entry.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39058605</pmid><doi>10.1109/TCBB.2024.3434340</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6030-4645</orcidid><orcidid>https://orcid.org/0000-0002-6927-8460</orcidid><orcidid>https://orcid.org/0000-0002-9552-4004</orcidid><orcidid>https://orcid.org/0000-0002-8077-9776</orcidid><orcidid>https://orcid.org/0000-0002-4624-0777</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2024-11, Vol.21 (6), p.1911-1921
issn 1545-5963
1557-9964
1557-9964
language eng
recordid cdi_pubmed_primary_39058605
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in silico screening
Antimicrobial drug resistance
Compounds
Data models
Grippers
High-temperature superconductors
high-throughput screening
Libraries
machine learning
Random forests
Training
title Machine Learning-Assisted High-Throughput Screening for Anti-MRSA Compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Assisted%20High-Throughput%20Screening%20for%20Anti-MRSA%20Compounds&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Shehadeh,%20Fadi&rft.date=2024-11-01&rft.volume=21&rft.issue=6&rft.spage=1911&rft.epage=1921&rft.pages=1911-1921&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2024.3434340&rft_dat=%3Cproquest_RIE%3E3085113775%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085113775&rft_id=info:pmid/39058605&rft_ieee_id=10609973&rfr_iscdi=true