Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality

Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-08, Vol.12 (32), p.7946-7958
Hauptverfasser: Chen, Xin, Liu, Wenhao, Su, Chi, Shan, Jianyang, Li, Xiang, Chai, Yimin, Yu, Yaling, Wen, Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7958
container_issue 32
container_start_page 7946
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 12
creator Chen, Xin
Liu, Wenhao
Su, Chi
Shan, Jianyang
Li, Xiang
Chai, Yimin
Yu, Yaling
Wen, Gen
description Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects. Multimodal analysis of the effects of cdECM biomaterials with different topological morphologies on chondrocyte morphologies, dynamics and functionality.
doi_str_mv 10.1039/d4tb00360h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39041314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092682603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-67538b88795301a7a124baf30f9d2c11f09b84279c6ac6aac2fd08b5d41e4de03</originalsourceid><addsrcrecordid>eNpd0ctKxDAUBuAgioq6ca8E3Ig4enJpmy51vIww4kbBXU1z0UrbjEkKztubcXQEQyAh-XI4_EFon8AZAVaeax5rAJbD2xrappDBqMiIWF_t4XkL7YXwDmkIkgvGN9EWK4ETRvg2erkf2th0TssWG2uNigE7i2WPzWf0Upm2HVrpcSejbz6x6_HfkfOzN9e61_kp1vNedo0K6aHGduhVbFwv2ybOd9GGlW0wez_rDnq6uX4cT0bTh9u78cV0pCjN4ygvMiZqIYoyY0BkIQnltbQMbKmpIsRCWQtOi1LlMk2pqNUg6kxzYrg2wHbQ8bLuzLuPwYRYdU1Y9Cp744ZQMRAsFxTKPNGjf_TdDT61u1AlTSoHltTJUinvQvDGVjPfdNLPKwLVIvrqij9efkc_Sfjwp-RQd0av6G_QCRwsgQ9qdfv3d-wLf06Ifg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092682603</pqid></control><display><type>article</type><title>Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Xin ; Liu, Wenhao ; Su, Chi ; Shan, Jianyang ; Li, Xiang ; Chai, Yimin ; Yu, Yaling ; Wen, Gen</creator><creatorcontrib>Chen, Xin ; Liu, Wenhao ; Su, Chi ; Shan, Jianyang ; Li, Xiang ; Chai, Yimin ; Yu, Yaling ; Wen, Gen</creatorcontrib><description>Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects. Multimodal analysis of the effects of cdECM biomaterials with different topological morphologies on chondrocyte morphologies, dynamics and functionality.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d4tb00360h</identifier><identifier>PMID: 39041314</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; Cartilage ; Cartilage, Articular ; Cell Proliferation - drug effects ; Cells, Cultured ; Chondrocytes ; Chondrocytes - cytology ; Defects ; Extracellular matrix ; Extracellular Matrix - chemistry ; Extracellular Matrix - metabolism ; Humans ; Morphology ; Particle Size ; Physical characteristics ; Physical properties ; R&amp;D ; Regeneration (physiology) ; Research &amp; development ; Tissue engineering ; Tissue Scaffolds - chemistry</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2024-08, Vol.12 (32), p.7946-7958</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-67538b88795301a7a124baf30f9d2c11f09b84279c6ac6aac2fd08b5d41e4de03</cites><orcidid>0000-0001-6116-4330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39041314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Liu, Wenhao</creatorcontrib><creatorcontrib>Su, Chi</creatorcontrib><creatorcontrib>Shan, Jianyang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chai, Yimin</creatorcontrib><creatorcontrib>Yu, Yaling</creatorcontrib><creatorcontrib>Wen, Gen</creatorcontrib><title>Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects. Multimodal analysis of the effects of cdECM biomaterials with different topological morphologies on chondrocyte morphologies, dynamics and functionality.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cartilage</subject><subject>Cartilage, Articular</subject><subject>Cell Proliferation - drug effects</subject><subject>Cells, Cultured</subject><subject>Chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Defects</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - chemistry</subject><subject>Extracellular Matrix - metabolism</subject><subject>Humans</subject><subject>Morphology</subject><subject>Particle Size</subject><subject>Physical characteristics</subject><subject>Physical properties</subject><subject>R&amp;D</subject><subject>Regeneration (physiology)</subject><subject>Research &amp; development</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0ctKxDAUBuAgioq6ca8E3Ig4enJpmy51vIww4kbBXU1z0UrbjEkKztubcXQEQyAh-XI4_EFon8AZAVaeax5rAJbD2xrappDBqMiIWF_t4XkL7YXwDmkIkgvGN9EWK4ETRvg2erkf2th0TssWG2uNigE7i2WPzWf0Upm2HVrpcSejbz6x6_HfkfOzN9e61_kp1vNedo0K6aHGduhVbFwv2ybOd9GGlW0wez_rDnq6uX4cT0bTh9u78cV0pCjN4ygvMiZqIYoyY0BkIQnltbQMbKmpIsRCWQtOi1LlMk2pqNUg6kxzYrg2wHbQ8bLuzLuPwYRYdU1Y9Cp744ZQMRAsFxTKPNGjf_TdDT61u1AlTSoHltTJUinvQvDGVjPfdNLPKwLVIvrqij9efkc_Sfjwp-RQd0av6G_QCRwsgQ9qdfv3d-wLf06Ifg</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Chen, Xin</creator><creator>Liu, Wenhao</creator><creator>Su, Chi</creator><creator>Shan, Jianyang</creator><creator>Li, Xiang</creator><creator>Chai, Yimin</creator><creator>Yu, Yaling</creator><creator>Wen, Gen</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6116-4330</orcidid></search><sort><creationdate>20240814</creationdate><title>Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality</title><author>Chen, Xin ; Liu, Wenhao ; Su, Chi ; Shan, Jianyang ; Li, Xiang ; Chai, Yimin ; Yu, Yaling ; Wen, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-67538b88795301a7a124baf30f9d2c11f09b84279c6ac6aac2fd08b5d41e4de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cartilage</topic><topic>Cartilage, Articular</topic><topic>Cell Proliferation - drug effects</topic><topic>Cells, Cultured</topic><topic>Chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Defects</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - chemistry</topic><topic>Extracellular Matrix - metabolism</topic><topic>Humans</topic><topic>Morphology</topic><topic>Particle Size</topic><topic>Physical characteristics</topic><topic>Physical properties</topic><topic>R&amp;D</topic><topic>Regeneration (physiology)</topic><topic>Research &amp; development</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Liu, Wenhao</creatorcontrib><creatorcontrib>Su, Chi</creatorcontrib><creatorcontrib>Shan, Jianyang</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chai, Yimin</creatorcontrib><creatorcontrib>Yu, Yaling</creatorcontrib><creatorcontrib>Wen, Gen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xin</au><au>Liu, Wenhao</au><au>Su, Chi</au><au>Shan, Jianyang</au><au>Li, Xiang</au><au>Chai, Yimin</au><au>Yu, Yaling</au><au>Wen, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2024-08-14</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><spage>7946</spage><epage>7958</epage><pages>7946-7958</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>Articular cartilage defects can lead to pain and even disability in patients and have significant socioeconomic loss. Repairing articular cartilage defects remains a long-term challenge in medicine owing to the limited ability of cartilage to regenerate. At present, the treatment methods adopted in clinical practice have many limitations, thereby necessitating the rapid development of biomaterials. Among them, decellularized biomaterials have been particularly prominent, with numerous breakthroughs in research progress and translational applications. Although many studies show that decellularized cartilage biomaterials promote tissue regeneration, any differences in cellular morphology, dynamics, and functionality among various biomaterials upon comparison have not been reported. In this study, we prepared cartilage-derived extracellular matrix (cdECM) biomaterials with different bioactive contents and various physical properties to compare their effects on the morphology, dynamics and functionality of chondrocytes. This cellular multimodal analysis of the characteristics of cdECM biomaterials provided a theoretical basis for understanding the interactions between biomaterials and cells, thus laying an experimental foundation for the translation and application of decellularized cartilage biomaterials in the treatment of cartilage defects. Multimodal analysis of the effects of cdECM biomaterials with different topological morphologies on chondrocyte morphologies, dynamics and functionality.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39041314</pmid><doi>10.1039/d4tb00360h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6116-4330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2024-08, Vol.12 (32), p.7946-7958
issn 2050-750X
2050-7518
2050-7518
language eng
recordid cdi_pubmed_primary_39041314
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Biomaterials
Biomedical materials
Cartilage
Cartilage, Articular
Cell Proliferation - drug effects
Cells, Cultured
Chondrocytes
Chondrocytes - cytology
Defects
Extracellular matrix
Extracellular Matrix - chemistry
Extracellular Matrix - metabolism
Humans
Morphology
Particle Size
Physical characteristics
Physical properties
R&D
Regeneration (physiology)
Research & development
Tissue engineering
Tissue Scaffolds - chemistry
title Multimodal effects of an extracellular matrix on cellular morphology, dynamics and functionality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20effects%20of%20an%20extracellular%20matrix%20on%20cellular%20morphology,%20dynamics%20and%20functionality&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Chen,%20Xin&rft.date=2024-08-14&rft.volume=12&rft.issue=32&rft.spage=7946&rft.epage=7958&rft.pages=7946-7958&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d4tb00360h&rft_dat=%3Cproquest_pubme%3E3092682603%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092682603&rft_id=info:pmid/39041314&rfr_iscdi=true