The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system

The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-07, Vol.161 (3)
Hauptverfasser: Sisodiya, Dilawar Singh, Chattopadhyay, Anjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Sisodiya, Dilawar Singh
Chattopadhyay, Anjan
description The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (
doi_str_mv 10.1063/5.0206946
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39017425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081780811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-27a6b42375f35ffb3c0eb64c6968fe153850af3a6719f8b60f9be999df9632963</originalsourceid><addsrcrecordid>eNp9kU1u1TAQgC1ERR-FBRdAltgAUso4TpyYXVXxU6kSm7KOHGesuEriYDuq8g7AAbgF1-Ik-JHXLrpgYXtsf_NJM0PIKwbnDAT_UJ5DDkIW4gnZMahlVgkJT8kOIGeZFCBOyfMQbgGAVXnxjJxymaIiL3fk902PdO5ddLrH0Wo10OjVFOifn7-otoGqqaOxRz-mn8P98L4RNrgRvd2raN1EZxX7O7UG6gxVe9fitHcZ45n27m6ieFB8pBdUu3Fe4r-UJAxx6VaaslUKvbITdlSverD63oET0rCGiOMLcmLUEPDl8Twj3z9_urn8ml1_-3J1eXGd6ZzXMcsrJdoi51VpeGlMyzVgKwotpKgNspLXJSjDlaiYNHUrwMgWpZSdkYLnaZ2Rt5t39u7HgiE2ow0ah0FN6JbQcKhZVaeNJfTNI_TWLT4VtlG15JxDot5tVGpFCB5NM3s7Kr82DJrD_JqyOc4vsa-PxqUdsXsg7weWgPcbELTd2vgf21_SoaYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081893330</pqid></control><display><type>article</type><title>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</title><source>AIP Journals Complete</source><creator>Sisodiya, Dilawar Singh ; Chattopadhyay, Anjan</creator><creatorcontrib>Sisodiya, Dilawar Singh ; Chattopadhyay, Anjan</creatorcontrib><description>The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (&lt;CNNC ≈ 98°), which is responsible for the cis isomer formation. The second excited singlet state (S2) of the trans form has a nearly planar minimum along the N–N stretching mode, which approaches a sloped S2/S1 intersection geometry. This excited state has a rotational minimum (&lt;CNNC ≈ 99°) as well. Both these minima have a characteristic S2–S1 energy gap of 9 kcal/mol and may undergo internal conversion. A comparison of this system with an analogous 2,2′-dimethoxy-substituted azobenzene system reveals less strain in the rotational path of the latter on the S1 surface, indicating the possibility of its better trans → cis yield than the azocrown. The completely planar S2 geometry of the dimethoxy system has easy access to the linear concerted inversion path, which seems to be the reason behind its reported slightly lower π–π*(S2) yield than n–π*(S1). The thermal cis → trans isomerization path of the azobenzo-13-crown passes through a transition state (frequency 453i cm−1), which corresponds to Gibbs free energy of activation value of 26 kcal/mol in the gas-phase and isooctane. Our study also confirms that its trans isomer strongly binds Li+ among the alkali metal ions, and this observation may open up possibilities for practical applications of this azobenzo-crown.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0206946</identifier><identifier>PMID: 39017425</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Activation energy ; Alkali metals ; Azo compounds ; Crown ethers ; Density functional theory ; Energy gap ; Geometry ; Gibbs free energy ; Internal conversion ; Isomerization ; Isomers ; Isooctane ; Polyoxyethylene ; Rotational states</subject><ispartof>The Journal of chemical physics, 2024-07, Vol.161 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-27a6b42375f35ffb3c0eb64c6968fe153850af3a6719f8b60f9be999df9632963</cites><orcidid>0000-0002-6027-7410 ; 0000-0003-3063-1375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0206946$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39017425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sisodiya, Dilawar Singh</creatorcontrib><creatorcontrib>Chattopadhyay, Anjan</creatorcontrib><title>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (&lt;CNNC ≈ 98°), which is responsible for the cis isomer formation. The second excited singlet state (S2) of the trans form has a nearly planar minimum along the N–N stretching mode, which approaches a sloped S2/S1 intersection geometry. This excited state has a rotational minimum (&lt;CNNC ≈ 99°) as well. Both these minima have a characteristic S2–S1 energy gap of 9 kcal/mol and may undergo internal conversion. A comparison of this system with an analogous 2,2′-dimethoxy-substituted azobenzene system reveals less strain in the rotational path of the latter on the S1 surface, indicating the possibility of its better trans → cis yield than the azocrown. The completely planar S2 geometry of the dimethoxy system has easy access to the linear concerted inversion path, which seems to be the reason behind its reported slightly lower π–π*(S2) yield than n–π*(S1). The thermal cis → trans isomerization path of the azobenzo-13-crown passes through a transition state (frequency 453i cm−1), which corresponds to Gibbs free energy of activation value of 26 kcal/mol in the gas-phase and isooctane. Our study also confirms that its trans isomer strongly binds Li+ among the alkali metal ions, and this observation may open up possibilities for practical applications of this azobenzo-crown.</description><subject>Activation energy</subject><subject>Alkali metals</subject><subject>Azo compounds</subject><subject>Crown ethers</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Geometry</subject><subject>Gibbs free energy</subject><subject>Internal conversion</subject><subject>Isomerization</subject><subject>Isomers</subject><subject>Isooctane</subject><subject>Polyoxyethylene</subject><subject>Rotational states</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1u1TAQgC1ERR-FBRdAltgAUso4TpyYXVXxU6kSm7KOHGesuEriYDuq8g7AAbgF1-Ik-JHXLrpgYXtsf_NJM0PIKwbnDAT_UJ5DDkIW4gnZMahlVgkJT8kOIGeZFCBOyfMQbgGAVXnxjJxymaIiL3fk902PdO5ddLrH0Wo10OjVFOifn7-otoGqqaOxRz-mn8P98L4RNrgRvd2raN1EZxX7O7UG6gxVe9fitHcZ45n27m6ieFB8pBdUu3Fe4r-UJAxx6VaaslUKvbITdlSverD63oET0rCGiOMLcmLUEPDl8Twj3z9_urn8ml1_-3J1eXGd6ZzXMcsrJdoi51VpeGlMyzVgKwotpKgNspLXJSjDlaiYNHUrwMgWpZSdkYLnaZ2Rt5t39u7HgiE2ow0ah0FN6JbQcKhZVaeNJfTNI_TWLT4VtlG15JxDot5tVGpFCB5NM3s7Kr82DJrD_JqyOc4vsa-PxqUdsXsg7weWgPcbELTd2vgf21_SoaYI</recordid><startdate>20240721</startdate><enddate>20240721</enddate><creator>Sisodiya, Dilawar Singh</creator><creator>Chattopadhyay, Anjan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6027-7410</orcidid><orcidid>https://orcid.org/0000-0003-3063-1375</orcidid></search><sort><creationdate>20240721</creationdate><title>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</title><author>Sisodiya, Dilawar Singh ; Chattopadhyay, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-27a6b42375f35ffb3c0eb64c6968fe153850af3a6719f8b60f9be999df9632963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activation energy</topic><topic>Alkali metals</topic><topic>Azo compounds</topic><topic>Crown ethers</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Geometry</topic><topic>Gibbs free energy</topic><topic>Internal conversion</topic><topic>Isomerization</topic><topic>Isomers</topic><topic>Isooctane</topic><topic>Polyoxyethylene</topic><topic>Rotational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sisodiya, Dilawar Singh</creatorcontrib><creatorcontrib>Chattopadhyay, Anjan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisodiya, Dilawar Singh</au><au>Chattopadhyay, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-07-21</date><risdate>2024</risdate><volume>161</volume><issue>3</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (&lt;CNNC ≈ 98°), which is responsible for the cis isomer formation. The second excited singlet state (S2) of the trans form has a nearly planar minimum along the N–N stretching mode, which approaches a sloped S2/S1 intersection geometry. This excited state has a rotational minimum (&lt;CNNC ≈ 99°) as well. Both these minima have a characteristic S2–S1 energy gap of 9 kcal/mol and may undergo internal conversion. A comparison of this system with an analogous 2,2′-dimethoxy-substituted azobenzene system reveals less strain in the rotational path of the latter on the S1 surface, indicating the possibility of its better trans → cis yield than the azocrown. The completely planar S2 geometry of the dimethoxy system has easy access to the linear concerted inversion path, which seems to be the reason behind its reported slightly lower π–π*(S2) yield than n–π*(S1). The thermal cis → trans isomerization path of the azobenzo-13-crown passes through a transition state (frequency 453i cm−1), which corresponds to Gibbs free energy of activation value of 26 kcal/mol in the gas-phase and isooctane. Our study also confirms that its trans isomer strongly binds Li+ among the alkali metal ions, and this observation may open up possibilities for practical applications of this azobenzo-crown.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39017425</pmid><doi>10.1063/5.0206946</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6027-7410</orcidid><orcidid>https://orcid.org/0000-0003-3063-1375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-07, Vol.161 (3)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_pubmed_primary_39017425
source AIP Journals Complete
subjects Activation energy
Alkali metals
Azo compounds
Crown ethers
Density functional theory
Energy gap
Geometry
Gibbs free energy
Internal conversion
Isomerization
Isomers
Isooctane
Polyoxyethylene
Rotational states
title The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photochemical%20trans%20%E2%86%92%20cis%20and%20thermal%20cis%20%E2%86%92%20trans%20isomerization%20pathways%20of%20azobenzo-13-crown%20ether:%20A%20computational%20study%20on%20a%20strained%20cyclic%20azobenzene%20system&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sisodiya,%20Dilawar%20Singh&rft.date=2024-07-21&rft.volume=161&rft.issue=3&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0206946&rft_dat=%3Cproquest_pubme%3E3081780811%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081893330&rft_id=info:pmid/39017425&rfr_iscdi=true