The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system
The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-e...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-07, Vol.161 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Sisodiya, Dilawar Singh Chattopadhyay, Anjan |
description | The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry ( |
doi_str_mv | 10.1063/5.0206946 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39017425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081780811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-27a6b42375f35ffb3c0eb64c6968fe153850af3a6719f8b60f9be999df9632963</originalsourceid><addsrcrecordid>eNp9kU1u1TAQgC1ERR-FBRdAltgAUso4TpyYXVXxU6kSm7KOHGesuEriYDuq8g7AAbgF1-Ik-JHXLrpgYXtsf_NJM0PIKwbnDAT_UJ5DDkIW4gnZMahlVgkJT8kOIGeZFCBOyfMQbgGAVXnxjJxymaIiL3fk902PdO5ddLrH0Wo10OjVFOifn7-otoGqqaOxRz-mn8P98L4RNrgRvd2raN1EZxX7O7UG6gxVe9fitHcZ45n27m6ieFB8pBdUu3Fe4r-UJAxx6VaaslUKvbITdlSverD63oET0rCGiOMLcmLUEPDl8Twj3z9_urn8ml1_-3J1eXGd6ZzXMcsrJdoi51VpeGlMyzVgKwotpKgNspLXJSjDlaiYNHUrwMgWpZSdkYLnaZ2Rt5t39u7HgiE2ow0ah0FN6JbQcKhZVaeNJfTNI_TWLT4VtlG15JxDot5tVGpFCB5NM3s7Kr82DJrD_JqyOc4vsa-PxqUdsXsg7weWgPcbELTd2vgf21_SoaYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081893330</pqid></control><display><type>article</type><title>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</title><source>AIP Journals Complete</source><creator>Sisodiya, Dilawar Singh ; Chattopadhyay, Anjan</creator><creatorcontrib>Sisodiya, Dilawar Singh ; Chattopadhyay, Anjan</creatorcontrib><description>The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (<CNNC ≈ 98°), which is responsible for the cis isomer formation. The second excited singlet state (S2) of the trans form has a nearly planar minimum along the N–N stretching mode, which approaches a sloped S2/S1 intersection geometry. This excited state has a rotational minimum (<CNNC ≈ 99°) as well. Both these minima have a characteristic S2–S1 energy gap of 9 kcal/mol and may undergo internal conversion. A comparison of this system with an analogous 2,2′-dimethoxy-substituted azobenzene system reveals less strain in the rotational path of the latter on the S1 surface, indicating the possibility of its better trans → cis yield than the azocrown. The completely planar S2 geometry of the dimethoxy system has easy access to the linear concerted inversion path, which seems to be the reason behind its reported slightly lower π–π*(S2) yield than n–π*(S1). The thermal cis → trans isomerization path of the azobenzo-13-crown passes through a transition state (frequency 453i cm−1), which corresponds to Gibbs free energy of activation value of 26 kcal/mol in the gas-phase and isooctane. Our study also confirms that its trans isomer strongly binds Li+ among the alkali metal ions, and this observation may open up possibilities for practical applications of this azobenzo-crown.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0206946</identifier><identifier>PMID: 39017425</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Activation energy ; Alkali metals ; Azo compounds ; Crown ethers ; Density functional theory ; Energy gap ; Geometry ; Gibbs free energy ; Internal conversion ; Isomerization ; Isomers ; Isooctane ; Polyoxyethylene ; Rotational states</subject><ispartof>The Journal of chemical physics, 2024-07, Vol.161 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-27a6b42375f35ffb3c0eb64c6968fe153850af3a6719f8b60f9be999df9632963</cites><orcidid>0000-0002-6027-7410 ; 0000-0003-3063-1375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0206946$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39017425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sisodiya, Dilawar Singh</creatorcontrib><creatorcontrib>Chattopadhyay, Anjan</creatorcontrib><title>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (<CNNC ≈ 98°), which is responsible for the cis isomer formation. The second excited singlet state (S2) of the trans form has a nearly planar minimum along the N–N stretching mode, which approaches a sloped S2/S1 intersection geometry. This excited state has a rotational minimum (<CNNC ≈ 99°) as well. Both these minima have a characteristic S2–S1 energy gap of 9 kcal/mol and may undergo internal conversion. A comparison of this system with an analogous 2,2′-dimethoxy-substituted azobenzene system reveals less strain in the rotational path of the latter on the S1 surface, indicating the possibility of its better trans → cis yield than the azocrown. The completely planar S2 geometry of the dimethoxy system has easy access to the linear concerted inversion path, which seems to be the reason behind its reported slightly lower π–π*(S2) yield than n–π*(S1). The thermal cis → trans isomerization path of the azobenzo-13-crown passes through a transition state (frequency 453i cm−1), which corresponds to Gibbs free energy of activation value of 26 kcal/mol in the gas-phase and isooctane. Our study also confirms that its trans isomer strongly binds Li+ among the alkali metal ions, and this observation may open up possibilities for practical applications of this azobenzo-crown.</description><subject>Activation energy</subject><subject>Alkali metals</subject><subject>Azo compounds</subject><subject>Crown ethers</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Geometry</subject><subject>Gibbs free energy</subject><subject>Internal conversion</subject><subject>Isomerization</subject><subject>Isomers</subject><subject>Isooctane</subject><subject>Polyoxyethylene</subject><subject>Rotational states</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1u1TAQgC1ERR-FBRdAltgAUso4TpyYXVXxU6kSm7KOHGesuEriYDuq8g7AAbgF1-Ik-JHXLrpgYXtsf_NJM0PIKwbnDAT_UJ5DDkIW4gnZMahlVgkJT8kOIGeZFCBOyfMQbgGAVXnxjJxymaIiL3fk902PdO5ddLrH0Wo10OjVFOifn7-otoGqqaOxRz-mn8P98L4RNrgRvd2raN1EZxX7O7UG6gxVe9fitHcZ45n27m6ieFB8pBdUu3Fe4r-UJAxx6VaaslUKvbITdlSverD63oET0rCGiOMLcmLUEPDl8Twj3z9_urn8ml1_-3J1eXGd6ZzXMcsrJdoi51VpeGlMyzVgKwotpKgNspLXJSjDlaiYNHUrwMgWpZSdkYLnaZ2Rt5t39u7HgiE2ow0ah0FN6JbQcKhZVaeNJfTNI_TWLT4VtlG15JxDot5tVGpFCB5NM3s7Kr82DJrD_JqyOc4vsa-PxqUdsXsg7weWgPcbELTd2vgf21_SoaYI</recordid><startdate>20240721</startdate><enddate>20240721</enddate><creator>Sisodiya, Dilawar Singh</creator><creator>Chattopadhyay, Anjan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6027-7410</orcidid><orcidid>https://orcid.org/0000-0003-3063-1375</orcidid></search><sort><creationdate>20240721</creationdate><title>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</title><author>Sisodiya, Dilawar Singh ; Chattopadhyay, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-27a6b42375f35ffb3c0eb64c6968fe153850af3a6719f8b60f9be999df9632963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activation energy</topic><topic>Alkali metals</topic><topic>Azo compounds</topic><topic>Crown ethers</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Geometry</topic><topic>Gibbs free energy</topic><topic>Internal conversion</topic><topic>Isomerization</topic><topic>Isomers</topic><topic>Isooctane</topic><topic>Polyoxyethylene</topic><topic>Rotational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sisodiya, Dilawar Singh</creatorcontrib><creatorcontrib>Chattopadhyay, Anjan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sisodiya, Dilawar Singh</au><au>Chattopadhyay, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-07-21</date><risdate>2024</risdate><volume>161</volume><issue>3</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The isomerization of azobenzo-13-crown ether can be expected to be hindered due to the polyoxyethylene linkage connecting the 2,2′-positions of azobenzene. The mixed reference spin-flip time-dependent density functional theory results reveal that the planar and rotational minima of the first photo-excited singlet state (S1) of the trans-isomer pass through a barrier (2.5–5.0 kcal/mol) as it goes toward the torsional conical intersection (S0/S1) geometry (<CNNC ≈ 98°), which is responsible for the cis isomer formation. The second excited singlet state (S2) of the trans form has a nearly planar minimum along the N–N stretching mode, which approaches a sloped S2/S1 intersection geometry. This excited state has a rotational minimum (<CNNC ≈ 99°) as well. Both these minima have a characteristic S2–S1 energy gap of 9 kcal/mol and may undergo internal conversion. A comparison of this system with an analogous 2,2′-dimethoxy-substituted azobenzene system reveals less strain in the rotational path of the latter on the S1 surface, indicating the possibility of its better trans → cis yield than the azocrown. The completely planar S2 geometry of the dimethoxy system has easy access to the linear concerted inversion path, which seems to be the reason behind its reported slightly lower π–π*(S2) yield than n–π*(S1). The thermal cis → trans isomerization path of the azobenzo-13-crown passes through a transition state (frequency 453i cm−1), which corresponds to Gibbs free energy of activation value of 26 kcal/mol in the gas-phase and isooctane. Our study also confirms that its trans isomer strongly binds Li+ among the alkali metal ions, and this observation may open up possibilities for practical applications of this azobenzo-crown.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39017425</pmid><doi>10.1063/5.0206946</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6027-7410</orcidid><orcidid>https://orcid.org/0000-0003-3063-1375</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-07, Vol.161 (3) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_39017425 |
source | AIP Journals Complete |
subjects | Activation energy Alkali metals Azo compounds Crown ethers Density functional theory Energy gap Geometry Gibbs free energy Internal conversion Isomerization Isomers Isooctane Polyoxyethylene Rotational states |
title | The photochemical trans → cis and thermal cis → trans isomerization pathways of azobenzo-13-crown ether: A computational study on a strained cyclic azobenzene system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photochemical%20trans%20%E2%86%92%20cis%20and%20thermal%20cis%20%E2%86%92%20trans%20isomerization%20pathways%20of%20azobenzo-13-crown%20ether:%20A%20computational%20study%20on%20a%20strained%20cyclic%20azobenzene%20system&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sisodiya,%20Dilawar%20Singh&rft.date=2024-07-21&rft.volume=161&rft.issue=3&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0206946&rft_dat=%3Cproquest_pubme%3E3081780811%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081893330&rft_id=info:pmid/39017425&rfr_iscdi=true |