Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation
Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmac...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-07, Vol.15 (27), p.1366-138 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 27 |
container_start_page | 1366 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Chen, Sheng Xie, Junjie Ye, Renlong Xu, David Daqiang Yang, Yuedong |
description | Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmacophore combination often struggles with long and expensive trial and error, because the protein pockets of the two targets impose complex structural constraints. In this study, we propose AIxFuse, a structure-aware dual-target drug design method that learns pharmacophore fusion patterns to satisfy the dual-target structural constraints simulated by molecular docking. AIxFuse employs two self-play reinforcement learning (RL) agents to learn pharmacophore selection and fusion by comprehensive feedback including dual-target molecular docking scores. Collaboratively, the molecular docking scores are learned by active learning (AL). Through collaborative RL and AL, AIxFuse learns to generate molecules with multiple desired properties. AIxFuse is shown to outperform state-of-the-art methods in generating dual-target drugs against glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). When applied to another task against retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH), AIxFuse exhibits consistent performance while compared methods suffer from performance drops, leading to a 5 times higher performance in success rate. Docking studies demonstrate that AIxFuse can generate molecules concurrently satisfying the binding mode required by both targets. Further free energy perturbation calculation indicates that the generated candidates have promising binding free energies against both targets.
AIxFuse learns to fuse pharmacophores to generate potential dual-target drugs through collaborative learning by Monte Carlo tree search and machine learning. |
doi_str_mv | 10.1039/d4sc00094c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38994407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079174499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-3f0273ee62d0bb9194da63d8122e4aed848e06976ea18b4272088e57b6a8c2bd3</originalsourceid><addsrcrecordid>eNpd0str3DAQB2BTWpqQ5NJ7i6CXUnCq19rSqYRt-oBADmnPZizN2gq2tJWslEL_-Giz6fZxGsF8_BhpVFUvGD1nVOh3ViZDKdXSPKmOOZWsblZCPz2cOT2qzlK6LYYKwVa8fV4dCaW1lLQ9rn7dLDGbJUes4QdEJDbDVC8QB1yIjXkgFpMbPFnGGPIwEhOmCfoQYXF3SCaE6J0fSNiQ7QhxBhO2Yyg5Jsy980UFT8BbMocJTZ4gkuTmUneN0-rZBqaEZ4_1pPr28fLr-nN9df3py_riqjaCqaUWG8pbgdhwS_teMy0tNMIqxjlKQKukQtrotkFgqpe85VQpXLV9A8rw3oqT6v0-d5v7Ga1Bv0SYum10M8SfXQDX_dvxbuyGcNcxxoVUjS4Jbx4TYvieMS3d7JLB8hQeQ06doK1mrZR6R1__R29Djr7cb6faRusVa4p6u1cmhpQibg7TMNrtFtt9kDfrh8WuC3719_wH-nuNBbzcg5jMofvnZ4h7D_KrGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077699516</pqid></control><display><type>article</type><title>Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Chen, Sheng ; Xie, Junjie ; Ye, Renlong ; Xu, David Daqiang ; Yang, Yuedong</creator><creatorcontrib>Chen, Sheng ; Xie, Junjie ; Ye, Renlong ; Xu, David Daqiang ; Yang, Yuedong</creatorcontrib><description>Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmacophore combination often struggles with long and expensive trial and error, because the protein pockets of the two targets impose complex structural constraints. In this study, we propose AIxFuse, a structure-aware dual-target drug design method that learns pharmacophore fusion patterns to satisfy the dual-target structural constraints simulated by molecular docking. AIxFuse employs two self-play reinforcement learning (RL) agents to learn pharmacophore selection and fusion by comprehensive feedback including dual-target molecular docking scores. Collaboratively, the molecular docking scores are learned by active learning (AL). Through collaborative RL and AL, AIxFuse learns to generate molecules with multiple desired properties. AIxFuse is shown to outperform state-of-the-art methods in generating dual-target drugs against glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). When applied to another task against retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH), AIxFuse exhibits consistent performance while compared methods suffer from performance drops, leading to a 5 times higher performance in success rate. Docking studies demonstrate that AIxFuse can generate molecules concurrently satisfying the binding mode required by both targets. Further free energy perturbation calculation indicates that the generated candidates have promising binding free energies against both targets.
AIxFuse learns to fuse pharmacophores to generate potential dual-target drugs through collaborative learning by Monte Carlo tree search and machine learning.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc00094c</identifier><identifier>PMID: 38994407</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Autoimmune diseases ; Binding ; Chemistry ; Collaboration ; Error analysis ; Free energy ; Glycogens ; Kinases ; Molecular docking ; Molecular structure ; Receptors ; Retinoic acid</subject><ispartof>Chemical science (Cambridge), 2024-07, Vol.15 (27), p.1366-138</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-3f0273ee62d0bb9194da63d8122e4aed848e06976ea18b4272088e57b6a8c2bd3</cites><orcidid>0000-0003-1428-6778 ; 0000-0002-6782-2813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234869/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234869/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38994407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Ye, Renlong</creatorcontrib><creatorcontrib>Xu, David Daqiang</creatorcontrib><creatorcontrib>Yang, Yuedong</creatorcontrib><title>Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmacophore combination often struggles with long and expensive trial and error, because the protein pockets of the two targets impose complex structural constraints. In this study, we propose AIxFuse, a structure-aware dual-target drug design method that learns pharmacophore fusion patterns to satisfy the dual-target structural constraints simulated by molecular docking. AIxFuse employs two self-play reinforcement learning (RL) agents to learn pharmacophore selection and fusion by comprehensive feedback including dual-target molecular docking scores. Collaboratively, the molecular docking scores are learned by active learning (AL). Through collaborative RL and AL, AIxFuse learns to generate molecules with multiple desired properties. AIxFuse is shown to outperform state-of-the-art methods in generating dual-target drugs against glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). When applied to another task against retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH), AIxFuse exhibits consistent performance while compared methods suffer from performance drops, leading to a 5 times higher performance in success rate. Docking studies demonstrate that AIxFuse can generate molecules concurrently satisfying the binding mode required by both targets. Further free energy perturbation calculation indicates that the generated candidates have promising binding free energies against both targets.
AIxFuse learns to fuse pharmacophores to generate potential dual-target drugs through collaborative learning by Monte Carlo tree search and machine learning.</description><subject>Autoimmune diseases</subject><subject>Binding</subject><subject>Chemistry</subject><subject>Collaboration</subject><subject>Error analysis</subject><subject>Free energy</subject><subject>Glycogens</subject><subject>Kinases</subject><subject>Molecular docking</subject><subject>Molecular structure</subject><subject>Receptors</subject><subject>Retinoic acid</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0str3DAQB2BTWpqQ5NJ7i6CXUnCq19rSqYRt-oBADmnPZizN2gq2tJWslEL_-Giz6fZxGsF8_BhpVFUvGD1nVOh3ViZDKdXSPKmOOZWsblZCPz2cOT2qzlK6LYYKwVa8fV4dCaW1lLQ9rn7dLDGbJUes4QdEJDbDVC8QB1yIjXkgFpMbPFnGGPIwEhOmCfoQYXF3SCaE6J0fSNiQ7QhxBhO2Yyg5Jsy980UFT8BbMocJTZ4gkuTmUneN0-rZBqaEZ4_1pPr28fLr-nN9df3py_riqjaCqaUWG8pbgdhwS_teMy0tNMIqxjlKQKukQtrotkFgqpe85VQpXLV9A8rw3oqT6v0-d5v7Ga1Bv0SYum10M8SfXQDX_dvxbuyGcNcxxoVUjS4Jbx4TYvieMS3d7JLB8hQeQ06doK1mrZR6R1__R29Djr7cb6faRusVa4p6u1cmhpQibg7TMNrtFtt9kDfrh8WuC3719_wH-nuNBbzcg5jMofvnZ4h7D_KrGQ</recordid><startdate>20240710</startdate><enddate>20240710</enddate><creator>Chen, Sheng</creator><creator>Xie, Junjie</creator><creator>Ye, Renlong</creator><creator>Xu, David Daqiang</creator><creator>Yang, Yuedong</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1428-6778</orcidid><orcidid>https://orcid.org/0000-0002-6782-2813</orcidid></search><sort><creationdate>20240710</creationdate><title>Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation</title><author>Chen, Sheng ; Xie, Junjie ; Ye, Renlong ; Xu, David Daqiang ; Yang, Yuedong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-3f0273ee62d0bb9194da63d8122e4aed848e06976ea18b4272088e57b6a8c2bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoimmune diseases</topic><topic>Binding</topic><topic>Chemistry</topic><topic>Collaboration</topic><topic>Error analysis</topic><topic>Free energy</topic><topic>Glycogens</topic><topic>Kinases</topic><topic>Molecular docking</topic><topic>Molecular structure</topic><topic>Receptors</topic><topic>Retinoic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Xie, Junjie</creatorcontrib><creatorcontrib>Ye, Renlong</creatorcontrib><creatorcontrib>Xu, David Daqiang</creatorcontrib><creatorcontrib>Yang, Yuedong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sheng</au><au>Xie, Junjie</au><au>Ye, Renlong</au><au>Xu, David Daqiang</au><au>Yang, Yuedong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-07-10</date><risdate>2024</risdate><volume>15</volume><issue>27</issue><spage>1366</spage><epage>138</epage><pages>1366-138</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Dual-target drug design has gained significant attention in the treatment of complex diseases, such as cancers and autoimmune disorders. A widely employed design strategy is combining pharmacophores to leverage the knowledge of structure-activity relationships of both targets. Unfortunately, pharmacophore combination often struggles with long and expensive trial and error, because the protein pockets of the two targets impose complex structural constraints. In this study, we propose AIxFuse, a structure-aware dual-target drug design method that learns pharmacophore fusion patterns to satisfy the dual-target structural constraints simulated by molecular docking. AIxFuse employs two self-play reinforcement learning (RL) agents to learn pharmacophore selection and fusion by comprehensive feedback including dual-target molecular docking scores. Collaboratively, the molecular docking scores are learned by active learning (AL). Through collaborative RL and AL, AIxFuse learns to generate molecules with multiple desired properties. AIxFuse is shown to outperform state-of-the-art methods in generating dual-target drugs against glycogen synthase kinase-3 beta (GSK3β) and c-Jun N-terminal kinase 3 (JNK3). When applied to another task against retinoic acid receptor-related orphan receptor γ-t (RORγt) and dihydroorotate dehydrogenase (DHODH), AIxFuse exhibits consistent performance while compared methods suffer from performance drops, leading to a 5 times higher performance in success rate. Docking studies demonstrate that AIxFuse can generate molecules concurrently satisfying the binding mode required by both targets. Further free energy perturbation calculation indicates that the generated candidates have promising binding free energies against both targets.
AIxFuse learns to fuse pharmacophores to generate potential dual-target drugs through collaborative learning by Monte Carlo tree search and machine learning.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38994407</pmid><doi>10.1039/d4sc00094c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1428-6778</orcidid><orcidid>https://orcid.org/0000-0002-6782-2813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-07, Vol.15 (27), p.1366-138 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmed_primary_38994407 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Autoimmune diseases Binding Chemistry Collaboration Error analysis Free energy Glycogens Kinases Molecular docking Molecular structure Receptors Retinoic acid |
title | Structure-aware dual-target drug design through collaborative learning of pharmacophore combination and molecular simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-aware%20dual-target%20drug%20design%20through%20collaborative%20learning%20of%20pharmacophore%20combination%20and%20molecular%20simulation&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Chen,%20Sheng&rft.date=2024-07-10&rft.volume=15&rft.issue=27&rft.spage=1366&rft.epage=138&rft.pages=1366-138&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc00094c&rft_dat=%3Cproquest_pubme%3E3079174499%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077699516&rft_id=info:pmid/38994407&rfr_iscdi=true |