Stringlet excitation model of the boson peak

The boson peak (BP), a low-energy excess in the vibrational density of states over the Debye contribution, is often identified as a characteristic of amorphous solid materials. Despite decades of efforts, its microscopic origin still remains a mystery. Recently, it has been proposed, and corroborate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-06, Vol.160 (21)
Hauptverfasser: Jiang, Cunyuan, Baggioli, Matteo, Douglas, Jack F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Jiang, Cunyuan
Baggioli, Matteo
Douglas, Jack F.
description The boson peak (BP), a low-energy excess in the vibrational density of states over the Debye contribution, is often identified as a characteristic of amorphous solid materials. Despite decades of efforts, its microscopic origin still remains a mystery. Recently, it has been proposed, and corroborated with simulations, that the BP might stem from intrinsic localized modes involving one-dimensional (1D) string-like excitations (“stringlets”). We build on a theory originally proposed by Lund that describes the localized modes as 1D vibrating strings, but we specify the stringlet size distribution to be exponential, as observed in simulations. We provide an analytical prediction for the BP frequency ωBP in the temperature regime well below the observed glass transition temperature Tg. The prediction involves no free parameters and accords quantitatively with prior simulation observations in 2D and 3D model glasses based on inverse power law potentials. The comparison of the string model to observations is more uncertain when compared to simulations of an Al–Sm metallic glass material at temperatures well above Tg. Nonetheless, our stringlet model of the BP naturally reproduces the softening of the BP frequency upon heating and offers an analytical explanation for the experimentally observed scaling with the shear modulus in the glass state and changes in this scaling in simulations of glass-forming liquids. Finally, the theoretical analysis highlights the existence of a strong damping for the stringlet modes above Tg, which leads to a large low-frequency contribution to the 3D vibrational density of states, observed in both experiments and simulations.
doi_str_mv 10.1063/5.0210057
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38832741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064316405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-ecdceaabede22d7555c5bcd287c99da4eed0521caa96e789fc373561b43e34c03</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgipvTg19ACl5U7HyTNEl7HMN_MPCgnkuavNXOtplNC_rtjW7z4MHTCw8_Hl4eQo4pTClIfiWmwCiAUDtkTCHNYiUz2CVjCHGcSZAjcuD9EgCoYsk-GfE05UwldEwuH_uual9q7CP8MFWv-8q1UeMs1pEro_4Vo8L5EK1Qvx2SvVLXHo82d0Keb66f5nfx4uH2fj5bxIbxtI_RWINaF2iRMauEEEYUxrJUmSyzOkG0IBg1WmcSVZqVhisuJC0SjjwxwCfkbN276tz7gL7Pm8obrGvdoht8zkEmImWcykBP_9ClG7o2fPejAklABHW-VqZz3ndY5quuanT3mVPIvyfMRb6ZMNiTTeNQNGh_5XazAC7WwG_3-qftC_3Tdvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064316405</pqid></control><display><type>article</type><title>Stringlet excitation model of the boson peak</title><source>AIP Journals Complete</source><creator>Jiang, Cunyuan ; Baggioli, Matteo ; Douglas, Jack F.</creator><creatorcontrib>Jiang, Cunyuan ; Baggioli, Matteo ; Douglas, Jack F.</creatorcontrib><description>The boson peak (BP), a low-energy excess in the vibrational density of states over the Debye contribution, is often identified as a characteristic of amorphous solid materials. Despite decades of efforts, its microscopic origin still remains a mystery. Recently, it has been proposed, and corroborated with simulations, that the BP might stem from intrinsic localized modes involving one-dimensional (1D) string-like excitations (“stringlets”). We build on a theory originally proposed by Lund that describes the localized modes as 1D vibrating strings, but we specify the stringlet size distribution to be exponential, as observed in simulations. We provide an analytical prediction for the BP frequency ωBP in the temperature regime well below the observed glass transition temperature Tg. The prediction involves no free parameters and accords quantitatively with prior simulation observations in 2D and 3D model glasses based on inverse power law potentials. The comparison of the string model to observations is more uncertain when compared to simulations of an Al–Sm metallic glass material at temperatures well above Tg. Nonetheless, our stringlet model of the BP naturally reproduces the softening of the BP frequency upon heating and offers an analytical explanation for the experimentally observed scaling with the shear modulus in the glass state and changes in this scaling in simulations of glass-forming liquids. Finally, the theoretical analysis highlights the existence of a strong damping for the stringlet modes above Tg, which leads to a large low-frequency contribution to the 3D vibrational density of states, observed in both experiments and simulations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0210057</identifier><identifier>PMID: 38832741</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amorphous materials ; Damping ; Density of states ; Excitation ; Glass ; Glass transition temperature ; Metallic glasses ; Samarium ; Shear modulus ; Simulation ; Size distribution ; Strings ; Three dimensional models</subject><ispartof>The Journal of chemical physics, 2024-06, Vol.160 (21)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-ecdceaabede22d7555c5bcd287c99da4eed0521caa96e789fc373561b43e34c03</cites><orcidid>0000-0001-9392-7507 ; 0000-0002-1424-6509 ; 0000-0001-7290-2300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0210057$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38832741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Cunyuan</creatorcontrib><creatorcontrib>Baggioli, Matteo</creatorcontrib><creatorcontrib>Douglas, Jack F.</creatorcontrib><title>Stringlet excitation model of the boson peak</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The boson peak (BP), a low-energy excess in the vibrational density of states over the Debye contribution, is often identified as a characteristic of amorphous solid materials. Despite decades of efforts, its microscopic origin still remains a mystery. Recently, it has been proposed, and corroborated with simulations, that the BP might stem from intrinsic localized modes involving one-dimensional (1D) string-like excitations (“stringlets”). We build on a theory originally proposed by Lund that describes the localized modes as 1D vibrating strings, but we specify the stringlet size distribution to be exponential, as observed in simulations. We provide an analytical prediction for the BP frequency ωBP in the temperature regime well below the observed glass transition temperature Tg. The prediction involves no free parameters and accords quantitatively with prior simulation observations in 2D and 3D model glasses based on inverse power law potentials. The comparison of the string model to observations is more uncertain when compared to simulations of an Al–Sm metallic glass material at temperatures well above Tg. Nonetheless, our stringlet model of the BP naturally reproduces the softening of the BP frequency upon heating and offers an analytical explanation for the experimentally observed scaling with the shear modulus in the glass state and changes in this scaling in simulations of glass-forming liquids. Finally, the theoretical analysis highlights the existence of a strong damping for the stringlet modes above Tg, which leads to a large low-frequency contribution to the 3D vibrational density of states, observed in both experiments and simulations.</description><subject>Amorphous materials</subject><subject>Damping</subject><subject>Density of states</subject><subject>Excitation</subject><subject>Glass</subject><subject>Glass transition temperature</subject><subject>Metallic glasses</subject><subject>Samarium</subject><subject>Shear modulus</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>Strings</subject><subject>Three dimensional models</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgipvTg19ACl5U7HyTNEl7HMN_MPCgnkuavNXOtplNC_rtjW7z4MHTCw8_Hl4eQo4pTClIfiWmwCiAUDtkTCHNYiUz2CVjCHGcSZAjcuD9EgCoYsk-GfE05UwldEwuH_uual9q7CP8MFWv-8q1UeMs1pEro_4Vo8L5EK1Qvx2SvVLXHo82d0Keb66f5nfx4uH2fj5bxIbxtI_RWINaF2iRMauEEEYUxrJUmSyzOkG0IBg1WmcSVZqVhisuJC0SjjwxwCfkbN276tz7gL7Pm8obrGvdoht8zkEmImWcykBP_9ClG7o2fPejAklABHW-VqZz3ndY5quuanT3mVPIvyfMRb6ZMNiTTeNQNGh_5XazAC7WwG_3-qftC_3Tdvc</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Jiang, Cunyuan</creator><creator>Baggioli, Matteo</creator><creator>Douglas, Jack F.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9392-7507</orcidid><orcidid>https://orcid.org/0000-0002-1424-6509</orcidid><orcidid>https://orcid.org/0000-0001-7290-2300</orcidid></search><sort><creationdate>20240607</creationdate><title>Stringlet excitation model of the boson peak</title><author>Jiang, Cunyuan ; Baggioli, Matteo ; Douglas, Jack F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-ecdceaabede22d7555c5bcd287c99da4eed0521caa96e789fc373561b43e34c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amorphous materials</topic><topic>Damping</topic><topic>Density of states</topic><topic>Excitation</topic><topic>Glass</topic><topic>Glass transition temperature</topic><topic>Metallic glasses</topic><topic>Samarium</topic><topic>Shear modulus</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>Strings</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Cunyuan</creatorcontrib><creatorcontrib>Baggioli, Matteo</creatorcontrib><creatorcontrib>Douglas, Jack F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Cunyuan</au><au>Baggioli, Matteo</au><au>Douglas, Jack F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stringlet excitation model of the boson peak</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-06-07</date><risdate>2024</risdate><volume>160</volume><issue>21</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The boson peak (BP), a low-energy excess in the vibrational density of states over the Debye contribution, is often identified as a characteristic of amorphous solid materials. Despite decades of efforts, its microscopic origin still remains a mystery. Recently, it has been proposed, and corroborated with simulations, that the BP might stem from intrinsic localized modes involving one-dimensional (1D) string-like excitations (“stringlets”). We build on a theory originally proposed by Lund that describes the localized modes as 1D vibrating strings, but we specify the stringlet size distribution to be exponential, as observed in simulations. We provide an analytical prediction for the BP frequency ωBP in the temperature regime well below the observed glass transition temperature Tg. The prediction involves no free parameters and accords quantitatively with prior simulation observations in 2D and 3D model glasses based on inverse power law potentials. The comparison of the string model to observations is more uncertain when compared to simulations of an Al–Sm metallic glass material at temperatures well above Tg. Nonetheless, our stringlet model of the BP naturally reproduces the softening of the BP frequency upon heating and offers an analytical explanation for the experimentally observed scaling with the shear modulus in the glass state and changes in this scaling in simulations of glass-forming liquids. Finally, the theoretical analysis highlights the existence of a strong damping for the stringlet modes above Tg, which leads to a large low-frequency contribution to the 3D vibrational density of states, observed in both experiments and simulations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38832741</pmid><doi>10.1063/5.0210057</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9392-7507</orcidid><orcidid>https://orcid.org/0000-0002-1424-6509</orcidid><orcidid>https://orcid.org/0000-0001-7290-2300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-06, Vol.160 (21)
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_38832741
source AIP Journals Complete
subjects Amorphous materials
Damping
Density of states
Excitation
Glass
Glass transition temperature
Metallic glasses
Samarium
Shear modulus
Simulation
Size distribution
Strings
Three dimensional models
title Stringlet excitation model of the boson peak
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stringlet%20excitation%20model%20of%20the%20boson%20peak&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Jiang,%20Cunyuan&rft.date=2024-06-07&rft.volume=160&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0210057&rft_dat=%3Cproquest_pubme%3E3064316405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064316405&rft_id=info:pmid/38832741&rfr_iscdi=true