Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15 N and δ 18 O dual-isotope approach
The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middl...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-05, p.172923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 172923 |
container_title | The Science of the total environment |
container_volume | |
creator | Kang, Pingping Xu, Jie Wang, Fuqiang Zhang, Honglu Zhao, Heng |
description | The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ
N and δ
O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate‑nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period. |
doi_str_mv | 10.1016/j.scitotenv.2024.172923 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38701929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38701929</sourcerecordid><originalsourceid>FETCH-pubmed_primary_387019293</originalsourceid><addsrcrecordid>eNqFT8tOwzAQtJAQLY9fgP2BBNuBJjlXIE70wr1akm3iKrEtr1NUPoXv4Dv4JhwEZ_YyO6OZWa0QN0rmSqrV7T7nxkQXyR5yLfVdrkpd6-JELFVV1pmSerUQ58x7maas1JlYFFUpVa3rpfhY9xiwiRTMu7EdxJ7AjD4p4HYQiCkcnAnA0QXsCNC20BpuUioxZ8GaGFxHFtqjxdE0DMYmF0yeYyAc4Y3iMKcmnvsRvj5B3cPzT9O8V7CBdsIhM-yi8-mE98Fh01-K0x0OTFe_eCGuHx9e1k-Zn15Harc-mBHDcfv3TPGv4RsRcmBd</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15 N and δ 18 O dual-isotope approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kang, Pingping ; Xu, Jie ; Wang, Fuqiang ; Zhang, Honglu ; Zhao, Heng</creator><creatorcontrib>Kang, Pingping ; Xu, Jie ; Wang, Fuqiang ; Zhang, Honglu ; Zhao, Heng</creatorcontrib><description>The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ
N and δ
O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate‑nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.</description><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2024.172923</identifier><identifier>PMID: 38701929</identifier><language>eng</language><publisher>Netherlands</publisher><ispartof>The Science of the total environment, 2024-05, p.172923</ispartof><rights>Copyright © 2024. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38701929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Pingping</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Wang, Fuqiang</creatorcontrib><creatorcontrib>Zhang, Honglu</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><title>Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15 N and δ 18 O dual-isotope approach</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ
N and δ
O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate‑nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.</description><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFT8tOwzAQtJAQLY9fgP2BBNuBJjlXIE70wr1akm3iKrEtr1NUPoXv4Dv4JhwEZ_YyO6OZWa0QN0rmSqrV7T7nxkQXyR5yLfVdrkpd6-JELFVV1pmSerUQ58x7maas1JlYFFUpVa3rpfhY9xiwiRTMu7EdxJ7AjD4p4HYQiCkcnAnA0QXsCNC20BpuUioxZ8GaGFxHFtqjxdE0DMYmF0yeYyAc4Y3iMKcmnvsRvj5B3cPzT9O8V7CBdsIhM-yi8-mE98Fh01-K0x0OTFe_eCGuHx9e1k-Zn15Harc-mBHDcfv3TPGv4RsRcmBd</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Kang, Pingping</creator><creator>Xu, Jie</creator><creator>Wang, Fuqiang</creator><creator>Zhang, Honglu</creator><creator>Zhao, Heng</creator><scope>NPM</scope></search><sort><creationdate>20240501</creationdate><title>Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15 N and δ 18 O dual-isotope approach</title><author>Kang, Pingping ; Xu, Jie ; Wang, Fuqiang ; Zhang, Honglu ; Zhao, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_387019293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Pingping</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Wang, Fuqiang</creatorcontrib><creatorcontrib>Zhang, Honglu</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><collection>PubMed</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Pingping</au><au>Xu, Jie</au><au>Wang, Fuqiang</au><au>Zhang, Honglu</au><au>Zhao, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15 N and δ 18 O dual-isotope approach</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2024-05-01</date><risdate>2024</risdate><spage>172923</spage><pages>172923-</pages><eissn>1879-1026</eissn><abstract>The identification of nitrate sources in reservoir water is important for watershed-scale surface pollution management. Significant fluctuations in river water levels arising from reservoir storage and discharge influence nitrate sources and transport processes. The Sanmenxia Reservoir, in the middle reaches of the Yellow River in China, undergoes significant water level changes (290-316 m), altering the composition of the nitrogen sources. This study employed a δ
N and δ
O dual-isotope method and MixSIAR modeling to quantify the contributions of nitrate sources. This reveals the impact of reservoir water impoundment and discharge on nitrogen dynamics in the upstream region of the wetland and the model sensitivity for each nitrate source. The results showed that the average concentrations of nitrate‑nitrogen (NO- 3-N) were elevated during the impoundment period compared to the discharge period. Nitrogen sources exhibited varying proportions in surface water, groundwater, and soil water during both the impoundment and discharge periods. The predominant sources include manure and sewage (MS), with a maximum proportion of 57.4 % in surface water. Soil nitrogen (SN) accounted for 25.8 % of groundwater nitrogen and 32.1 % of soil water nitrogen during the impoundment period, whereas, during the discharge period, soil nitrogen made up 41.4 % of surface water nitrogen, manure and sewage contributed 44.8 % of groundwater nitrogen, and manure and sewage dominated with 56.7 % of soil water nitrogen. Sensitivity analysis of the MixSIAR model revealed that the isotopic composition of the manure and sewage primary source most significantly influenced the apportionment results of the riverine nitrate source. Reservoir discharge facilitates the dissimilatory nitrate reduction to ammonium (DNRA). The migration of NO- 3 from surface water to soil water and groundwater occurred from the impoundment period to the discharge period.</abstract><cop>Netherlands</cop><pmid>38701929</pmid><doi>10.1016/j.scitotenv.2024.172923</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1879-1026 |
ispartof | The Science of the total environment, 2024-05, p.172923 |
issn | 1879-1026 |
language | eng |
recordid | cdi_pubmed_primary_38701929 |
source | ScienceDirect Journals (5 years ago - present) |
title | Characterizing the impact of reservoir storage and discharge on nitrogen dynamics in an upstream wetland using a δ 15 N and δ 18 O dual-isotope approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20impact%20of%20reservoir%20storage%20and%20discharge%20on%20nitrogen%20dynamics%20in%20an%20upstream%20wetland%20using%20a%20%CE%B4%2015%20N%20and%20%CE%B4%2018%20O%20dual-isotope%20approach&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Kang,%20Pingping&rft.date=2024-05-01&rft.spage=172923&rft.pages=172923-&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2024.172923&rft_dat=%3Cpubmed%3E38701929%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38701929&rfr_iscdi=true |