Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations

Bismuth (Bi( iii )) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi 3+ substitution is essential for cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-05, Vol.26 (19), p.14277-14287
Hauptverfasser: Quindoza, Gerardo Martin, Nakagawa, Yasuhiro, Mizuno, Hayato Laurence, Anraku, Yasutaka, Espiritu, Richard, Ikoma, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14287
container_issue 19
container_start_page 14277
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Quindoza, Gerardo Martin
Nakagawa, Yasuhiro
Mizuno, Hayato Laurence
Anraku, Yasutaka
Espiritu, Richard
Ikoma, Toshiyuki
description Bismuth (Bi( iii )) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi 3+ substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi( iii ) into the HAp lattice with formula of Ca 9 Bi(PO 4 ) 6 (O)(OH) was investigated via first-principles simulation by implementing density functional theory. Energy calculations showed that Bi 3+ preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi 3+ ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi 3+ ion substitution site preference in HAp using first-principles simulations. Bismuth substitution in hydroxyapatite lattice was investigated via first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.
doi_str_mv 10.1039/d4cp00864b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38693816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050174128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-3d79b8138566262497fda4acd6a8b307831bd7a2fa7cf16e0ee84123334ba0753</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMotlYv3pWAFxVWk02aZI-2foKgoJ6XbDarKdvdNZOA_e_dtlrB0zyY3zxm5iF0SMkFJSy7LLnpCFGCF1toSLlgSUYU395oKQZoD2BGCKFjynbRgCmRMUXFEH29uGBx521lvW2Mxbopcd0aXWMIPpoQ_UrqwtUuLHBb4Yk7PcMQCwguxODaBrsGfyxK334tdKfD0jCCa95x5TyEpPOuMa6rLWBw81jr5Qzso51K12APfuoIvd3evE7vk8enu4fp1WNi0kyEhJUyKxRlaixEKlKeyarUXJtSaFUwIhWjRSl1WmlpKiossVZxmjLGeKGJHLMROl37dr79jBZCPndgbF3rxrYRckbGhMp-RPXoyT901kbf9NstKS4zTvq3jdD5mjK-Begfl_cHzrVf5JTkyzzyaz59XuUx6eHjH8tYzG25QX8D6IGjNeDBbLp_gbJvAGuQ8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054794069</pqid></control><display><type>article</type><title>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Quindoza, Gerardo Martin ; Nakagawa, Yasuhiro ; Mizuno, Hayato Laurence ; Anraku, Yasutaka ; Espiritu, Richard ; Ikoma, Toshiyuki</creator><creatorcontrib>Quindoza, Gerardo Martin ; Nakagawa, Yasuhiro ; Mizuno, Hayato Laurence ; Anraku, Yasutaka ; Espiritu, Richard ; Ikoma, Toshiyuki</creatorcontrib><description>Bismuth (Bi( iii )) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi 3+ substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi( iii ) into the HAp lattice with formula of Ca 9 Bi(PO 4 ) 6 (O)(OH) was investigated via first-principles simulation by implementing density functional theory. Energy calculations showed that Bi 3+ preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi 3+ ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi 3+ ion substitution site preference in HAp using first-principles simulations. Bismuth substitution in hydroxyapatite lattice was investigated via first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp00864b</identifier><identifier>PMID: 38693816</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bismuth ; Density functional theory ; First principles ; Hydroxyapatite ; Structural analysis ; Structural stability ; Substitutes</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14277-14287</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-3d79b8138566262497fda4acd6a8b307831bd7a2fa7cf16e0ee84123334ba0753</cites><orcidid>0000-0002-8336-9625 ; 0000-0002-8825-0287 ; 0000-0002-2152-3519 ; 0000-0003-3154-1777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38693816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quindoza, Gerardo Martin</creatorcontrib><creatorcontrib>Nakagawa, Yasuhiro</creatorcontrib><creatorcontrib>Mizuno, Hayato Laurence</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Espiritu, Richard</creatorcontrib><creatorcontrib>Ikoma, Toshiyuki</creatorcontrib><title>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Bismuth (Bi( iii )) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi 3+ substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi( iii ) into the HAp lattice with formula of Ca 9 Bi(PO 4 ) 6 (O)(OH) was investigated via first-principles simulation by implementing density functional theory. Energy calculations showed that Bi 3+ preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi 3+ ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi 3+ ion substitution site preference in HAp using first-principles simulations. Bismuth substitution in hydroxyapatite lattice was investigated via first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.</description><subject>Bismuth</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Hydroxyapatite</subject><subject>Structural analysis</subject><subject>Structural stability</subject><subject>Substitutes</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMotlYv3pWAFxVWk02aZI-2foKgoJ6XbDarKdvdNZOA_e_dtlrB0zyY3zxm5iF0SMkFJSy7LLnpCFGCF1toSLlgSUYU395oKQZoD2BGCKFjynbRgCmRMUXFEH29uGBx521lvW2Mxbopcd0aXWMIPpoQ_UrqwtUuLHBb4Yk7PcMQCwguxODaBrsGfyxK334tdKfD0jCCa95x5TyEpPOuMa6rLWBw81jr5Qzso51K12APfuoIvd3evE7vk8enu4fp1WNi0kyEhJUyKxRlaixEKlKeyarUXJtSaFUwIhWjRSl1WmlpKiossVZxmjLGeKGJHLMROl37dr79jBZCPndgbF3rxrYRckbGhMp-RPXoyT901kbf9NstKS4zTvq3jdD5mjK-Begfl_cHzrVf5JTkyzzyaz59XuUx6eHjH8tYzG25QX8D6IGjNeDBbLp_gbJvAGuQ8w</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Quindoza, Gerardo Martin</creator><creator>Nakagawa, Yasuhiro</creator><creator>Mizuno, Hayato Laurence</creator><creator>Anraku, Yasutaka</creator><creator>Espiritu, Richard</creator><creator>Ikoma, Toshiyuki</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8336-9625</orcidid><orcidid>https://orcid.org/0000-0002-8825-0287</orcidid><orcidid>https://orcid.org/0000-0002-2152-3519</orcidid><orcidid>https://orcid.org/0000-0003-3154-1777</orcidid></search><sort><creationdate>20240515</creationdate><title>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</title><author>Quindoza, Gerardo Martin ; Nakagawa, Yasuhiro ; Mizuno, Hayato Laurence ; Anraku, Yasutaka ; Espiritu, Richard ; Ikoma, Toshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-3d79b8138566262497fda4acd6a8b307831bd7a2fa7cf16e0ee84123334ba0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Hydroxyapatite</topic><topic>Structural analysis</topic><topic>Structural stability</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quindoza, Gerardo Martin</creatorcontrib><creatorcontrib>Nakagawa, Yasuhiro</creatorcontrib><creatorcontrib>Mizuno, Hayato Laurence</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Espiritu, Richard</creatorcontrib><creatorcontrib>Ikoma, Toshiyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quindoza, Gerardo Martin</au><au>Nakagawa, Yasuhiro</au><au>Mizuno, Hayato Laurence</au><au>Anraku, Yasutaka</au><au>Espiritu, Richard</au><au>Ikoma, Toshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>26</volume><issue>19</issue><spage>14277</spage><epage>14287</epage><pages>14277-14287</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Bismuth (Bi( iii )) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi 3+ substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi( iii ) into the HAp lattice with formula of Ca 9 Bi(PO 4 ) 6 (O)(OH) was investigated via first-principles simulation by implementing density functional theory. Energy calculations showed that Bi 3+ preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi 3+ ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi 3+ ion substitution site preference in HAp using first-principles simulations. Bismuth substitution in hydroxyapatite lattice was investigated via first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38693816</pmid><doi>10.1039/d4cp00864b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8336-9625</orcidid><orcidid>https://orcid.org/0000-0002-8825-0287</orcidid><orcidid>https://orcid.org/0000-0002-2152-3519</orcidid><orcidid>https://orcid.org/0000-0003-3154-1777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14277-14287
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_38693816
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Bismuth
Density functional theory
First principles
Hydroxyapatite
Structural analysis
Structural stability
Substitutes
title Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%20preference%20and%20local%20structural%20stability%20of%20Bi()%20substitution%20in%20hydroxyapatite%20using%20first-principles%20simulations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Quindoza,%20Gerardo%20Martin&rft.date=2024-05-15&rft.volume=26&rft.issue=19&rft.spage=14277&rft.epage=14287&rft.pages=14277-14287&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp00864b&rft_dat=%3Cproquest_pubme%3E3050174128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054794069&rft_id=info:pmid/38693816&rfr_iscdi=true