Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations
Bismuth (Bi( iii )) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi 3+ substitution is essential for cont...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-05, Vol.26 (19), p.14277-14287 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14287 |
---|---|
container_issue | 19 |
container_start_page | 14277 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Quindoza, Gerardo Martin Nakagawa, Yasuhiro Mizuno, Hayato Laurence Anraku, Yasutaka Espiritu, Richard Ikoma, Toshiyuki |
description | Bismuth (Bi(
iii
)) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi
3+
substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi(
iii
) into the HAp lattice with formula of Ca
9
Bi(PO
4
)
6
(O)(OH) was investigated
via
first-principles simulation by implementing density functional theory. Energy calculations showed that Bi
3+
preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi
3+
ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi
3+
ion substitution site preference in HAp using first-principles simulations.
Bismuth substitution in hydroxyapatite lattice was investigated
via
first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization. |
doi_str_mv | 10.1039/d4cp00864b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38693816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3050174128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-3d79b8138566262497fda4acd6a8b307831bd7a2fa7cf16e0ee84123334ba0753</originalsourceid><addsrcrecordid>eNpdkc1LAzEQxYMotlYv3pWAFxVWk02aZI-2foKgoJ6XbDarKdvdNZOA_e_dtlrB0zyY3zxm5iF0SMkFJSy7LLnpCFGCF1toSLlgSUYU395oKQZoD2BGCKFjynbRgCmRMUXFEH29uGBx521lvW2Mxbopcd0aXWMIPpoQ_UrqwtUuLHBb4Yk7PcMQCwguxODaBrsGfyxK334tdKfD0jCCa95x5TyEpPOuMa6rLWBw81jr5Qzso51K12APfuoIvd3evE7vk8enu4fp1WNi0kyEhJUyKxRlaixEKlKeyarUXJtSaFUwIhWjRSl1WmlpKiossVZxmjLGeKGJHLMROl37dr79jBZCPndgbF3rxrYRckbGhMp-RPXoyT901kbf9NstKS4zTvq3jdD5mjK-Begfl_cHzrVf5JTkyzzyaz59XuUx6eHjH8tYzG25QX8D6IGjNeDBbLp_gbJvAGuQ8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054794069</pqid></control><display><type>article</type><title>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Quindoza, Gerardo Martin ; Nakagawa, Yasuhiro ; Mizuno, Hayato Laurence ; Anraku, Yasutaka ; Espiritu, Richard ; Ikoma, Toshiyuki</creator><creatorcontrib>Quindoza, Gerardo Martin ; Nakagawa, Yasuhiro ; Mizuno, Hayato Laurence ; Anraku, Yasutaka ; Espiritu, Richard ; Ikoma, Toshiyuki</creatorcontrib><description>Bismuth (Bi(
iii
)) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi
3+
substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi(
iii
) into the HAp lattice with formula of Ca
9
Bi(PO
4
)
6
(O)(OH) was investigated
via
first-principles simulation by implementing density functional theory. Energy calculations showed that Bi
3+
preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi
3+
ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi
3+
ion substitution site preference in HAp using first-principles simulations.
Bismuth substitution in hydroxyapatite lattice was investigated
via
first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp00864b</identifier><identifier>PMID: 38693816</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bismuth ; Density functional theory ; First principles ; Hydroxyapatite ; Structural analysis ; Structural stability ; Substitutes</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14277-14287</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-3d79b8138566262497fda4acd6a8b307831bd7a2fa7cf16e0ee84123334ba0753</cites><orcidid>0000-0002-8336-9625 ; 0000-0002-8825-0287 ; 0000-0002-2152-3519 ; 0000-0003-3154-1777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38693816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quindoza, Gerardo Martin</creatorcontrib><creatorcontrib>Nakagawa, Yasuhiro</creatorcontrib><creatorcontrib>Mizuno, Hayato Laurence</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Espiritu, Richard</creatorcontrib><creatorcontrib>Ikoma, Toshiyuki</creatorcontrib><title>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Bismuth (Bi(
iii
)) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi
3+
substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi(
iii
) into the HAp lattice with formula of Ca
9
Bi(PO
4
)
6
(O)(OH) was investigated
via
first-principles simulation by implementing density functional theory. Energy calculations showed that Bi
3+
preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi
3+
ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi
3+
ion substitution site preference in HAp using first-principles simulations.
Bismuth substitution in hydroxyapatite lattice was investigated
via
first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.</description><subject>Bismuth</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Hydroxyapatite</subject><subject>Structural analysis</subject><subject>Structural stability</subject><subject>Substitutes</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LAzEQxYMotlYv3pWAFxVWk02aZI-2foKgoJ6XbDarKdvdNZOA_e_dtlrB0zyY3zxm5iF0SMkFJSy7LLnpCFGCF1toSLlgSUYU395oKQZoD2BGCKFjynbRgCmRMUXFEH29uGBx521lvW2Mxbopcd0aXWMIPpoQ_UrqwtUuLHBb4Yk7PcMQCwguxODaBrsGfyxK334tdKfD0jCCa95x5TyEpPOuMa6rLWBw81jr5Qzso51K12APfuoIvd3evE7vk8enu4fp1WNi0kyEhJUyKxRlaixEKlKeyarUXJtSaFUwIhWjRSl1WmlpKiossVZxmjLGeKGJHLMROl37dr79jBZCPndgbF3rxrYRckbGhMp-RPXoyT901kbf9NstKS4zTvq3jdD5mjK-Begfl_cHzrVf5JTkyzzyaz59XuUx6eHjH8tYzG25QX8D6IGjNeDBbLp_gbJvAGuQ8w</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Quindoza, Gerardo Martin</creator><creator>Nakagawa, Yasuhiro</creator><creator>Mizuno, Hayato Laurence</creator><creator>Anraku, Yasutaka</creator><creator>Espiritu, Richard</creator><creator>Ikoma, Toshiyuki</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8336-9625</orcidid><orcidid>https://orcid.org/0000-0002-8825-0287</orcidid><orcidid>https://orcid.org/0000-0002-2152-3519</orcidid><orcidid>https://orcid.org/0000-0003-3154-1777</orcidid></search><sort><creationdate>20240515</creationdate><title>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</title><author>Quindoza, Gerardo Martin ; Nakagawa, Yasuhiro ; Mizuno, Hayato Laurence ; Anraku, Yasutaka ; Espiritu, Richard ; Ikoma, Toshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-3d79b8138566262497fda4acd6a8b307831bd7a2fa7cf16e0ee84123334ba0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Hydroxyapatite</topic><topic>Structural analysis</topic><topic>Structural stability</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quindoza, Gerardo Martin</creatorcontrib><creatorcontrib>Nakagawa, Yasuhiro</creatorcontrib><creatorcontrib>Mizuno, Hayato Laurence</creatorcontrib><creatorcontrib>Anraku, Yasutaka</creatorcontrib><creatorcontrib>Espiritu, Richard</creatorcontrib><creatorcontrib>Ikoma, Toshiyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quindoza, Gerardo Martin</au><au>Nakagawa, Yasuhiro</au><au>Mizuno, Hayato Laurence</au><au>Anraku, Yasutaka</au><au>Espiritu, Richard</au><au>Ikoma, Toshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>26</volume><issue>19</issue><spage>14277</spage><epage>14287</epage><pages>14277-14287</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Bismuth (Bi(
iii
)) substitution in hydroxyapatite (HAp) lattice confers unique properties such as antibacterial, catalytic, radiosensitization, and conductive properties while preserving the innate bioactivity. Understanding the local structural changes upon Bi
3+
substitution is essential for controlling the stability and optimizing the properties of HAp. Despite numerous experimental studies, the precise substitution behaviors, such as site preference and structural stability, remain incompletely understood. In this study, the substitution behavior of Bi(
iii
) into the HAp lattice with formula of Ca
9
Bi(PO
4
)
6
(O)(OH) was investigated
via
first-principles simulation by implementing density functional theory. Energy calculations showed that Bi
3+
preferentially occupies the Ca(2) site with an energy difference of ∼0.02 eV per atom. Local structure analysis revealed higher bond population values and an oxygen coordination shift from 7 to 6 for the Ca(2) site, attributed to the greater covalent interactions and its flexible environment accommodating the bulky Bi
3+
ion and its stereochemically active lone pair. This work provides the first comprehensive investigation on Bi
3+
ion substitution site preference in HAp using first-principles simulations.
Bismuth substitution in hydroxyapatite lattice was investigated
via
first-principles simulations, revealing a preference for the Ca(2) site and clarifying structural changes critical for optimization.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38693816</pmid><doi>10.1039/d4cp00864b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8336-9625</orcidid><orcidid>https://orcid.org/0000-0002-8825-0287</orcidid><orcidid>https://orcid.org/0000-0002-2152-3519</orcidid><orcidid>https://orcid.org/0000-0003-3154-1777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-05, Vol.26 (19), p.14277-14287 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_38693816 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Bismuth Density functional theory First principles Hydroxyapatite Structural analysis Structural stability Substitutes |
title | Site preference and local structural stability of Bi() substitution in hydroxyapatite using first-principles simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%20preference%20and%20local%20structural%20stability%20of%20Bi()%20substitution%20in%20hydroxyapatite%20using%20first-principles%20simulations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Quindoza,%20Gerardo%20Martin&rft.date=2024-05-15&rft.volume=26&rft.issue=19&rft.spage=14277&rft.epage=14287&rft.pages=14277-14287&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp00864b&rft_dat=%3Cproquest_pubme%3E3050174128%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054794069&rft_id=info:pmid/38693816&rfr_iscdi=true |