Collagenase motors in gelatine-based hydrogels
Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loa...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-05, Vol.16 (2), p.9935-9943 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9943 |
---|---|
container_issue | 2 |
container_start_page | 9935 |
container_title | Nanoscale |
container_volume | 16 |
creator | Wang, Nanying Floriano Marcelino, Thaís Ade, Carina Pendlmayr, Stefan Ramos Docampo, Miguel A Städler, Brigitte |
description | Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 μm motors achieve similar speeds as high as ∼15 μm s
−1
in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.
Motors equipped with collagenase trapped in polymer brushes exhibit high speeds of up to ∼15 μm s
−1
in stiff gelatine hydrogels when activated with calcium, showing potential as effective carriers for drug delivery across the extracellular matrix. |
doi_str_mv | 10.1039/d3nr05712g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38690802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058538859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-7992340c3546661729f06d62ad5a636fa0c33b86c4bb388f36517fbd040729463</originalsourceid><addsrcrecordid>eNpdkUFLw0AQhRdRbK1evCsBLyKk7u4ks9mjRK1CURA9h02yqSlJtu4mh_57t7ZW8DTDvI_H4w0h54xOGQV5W0JnaSwYXxyQMacRDQEEP9zvGI3IiXNLSlECwjEZQYKSJpSPyTQ1TaMWulNOB63pjXVB3QUL3ai-7nSY-3sZfK5La_zNnZKjSjVOn-3mhHw8PrynT-H8dfac3s3DgkvsQyElh4gWEEeIyASXFcUSuSpjhYCV8hLkCRZRnkOSVIAxE1Ve-ryejRAm5Hrru7Lma9Cuz9raFdpH7bQZXAY0pkwILphHr_6hSzPYzqfbUEns_WPpqZstVVjjnNVVtrJ1q-w6YzTbtJjdw8vbT4szD1_uLIe81eUe_a3NAxdbwLpir_69Ab4BJPZzbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058538859</pqid></control><display><type>article</type><title>Collagenase motors in gelatine-based hydrogels</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Nanying ; Floriano Marcelino, Thaís ; Ade, Carina ; Pendlmayr, Stefan ; Ramos Docampo, Miguel A ; Städler, Brigitte</creator><creatorcontrib>Wang, Nanying ; Floriano Marcelino, Thaís ; Ade, Carina ; Pendlmayr, Stefan ; Ramos Docampo, Miguel A ; Städler, Brigitte</creatorcontrib><description>Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 μm motors achieve similar speeds as high as ∼15 μm s
−1
in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.
Motors equipped with collagenase trapped in polymer brushes exhibit high speeds of up to ∼15 μm s
−1
in stiff gelatine hydrogels when activated with calcium, showing potential as effective carriers for drug delivery across the extracellular matrix.</description><identifier>ISSN: 2040-3364</identifier><identifier>ISSN: 2040-3372</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr05712g</identifier><identifier>PMID: 38690802</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Calcium - chemistry ; Calcium - metabolism ; Collagenases - chemistry ; Collagenases - metabolism ; Gelatin - chemistry ; Hydrogels ; Hydrogels - chemistry ; Micromotors ; Motors ; Silicon Dioxide - chemistry ; Viscosity</subject><ispartof>Nanoscale, 2024-05, Vol.16 (2), p.9935-9943</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-7992340c3546661729f06d62ad5a636fa0c33b86c4bb388f36517fbd040729463</cites><orcidid>0000-0002-7335-3945 ; 0000-0002-2714-0164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38690802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Nanying</creatorcontrib><creatorcontrib>Floriano Marcelino, Thaís</creatorcontrib><creatorcontrib>Ade, Carina</creatorcontrib><creatorcontrib>Pendlmayr, Stefan</creatorcontrib><creatorcontrib>Ramos Docampo, Miguel A</creatorcontrib><creatorcontrib>Städler, Brigitte</creatorcontrib><title>Collagenase motors in gelatine-based hydrogels</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 μm motors achieve similar speeds as high as ∼15 μm s
−1
in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.
Motors equipped with collagenase trapped in polymer brushes exhibit high speeds of up to ∼15 μm s
−1
in stiff gelatine hydrogels when activated with calcium, showing potential as effective carriers for drug delivery across the extracellular matrix.</description><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Collagenases - chemistry</subject><subject>Collagenases - metabolism</subject><subject>Gelatin - chemistry</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Micromotors</subject><subject>Motors</subject><subject>Silicon Dioxide - chemistry</subject><subject>Viscosity</subject><issn>2040-3364</issn><issn>2040-3372</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFLw0AQhRdRbK1evCsBLyKk7u4ks9mjRK1CURA9h02yqSlJtu4mh_57t7ZW8DTDvI_H4w0h54xOGQV5W0JnaSwYXxyQMacRDQEEP9zvGI3IiXNLSlECwjEZQYKSJpSPyTQ1TaMWulNOB63pjXVB3QUL3ai-7nSY-3sZfK5La_zNnZKjSjVOn-3mhHw8PrynT-H8dfac3s3DgkvsQyElh4gWEEeIyASXFcUSuSpjhYCV8hLkCRZRnkOSVIAxE1Ve-ryejRAm5Hrru7Lma9Cuz9raFdpH7bQZXAY0pkwILphHr_6hSzPYzqfbUEns_WPpqZstVVjjnNVVtrJ1q-w6YzTbtJjdw8vbT4szD1_uLIe81eUe_a3NAxdbwLpir_69Ab4BJPZzbA</recordid><startdate>20240523</startdate><enddate>20240523</enddate><creator>Wang, Nanying</creator><creator>Floriano Marcelino, Thaís</creator><creator>Ade, Carina</creator><creator>Pendlmayr, Stefan</creator><creator>Ramos Docampo, Miguel A</creator><creator>Städler, Brigitte</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7335-3945</orcidid><orcidid>https://orcid.org/0000-0002-2714-0164</orcidid></search><sort><creationdate>20240523</creationdate><title>Collagenase motors in gelatine-based hydrogels</title><author>Wang, Nanying ; Floriano Marcelino, Thaís ; Ade, Carina ; Pendlmayr, Stefan ; Ramos Docampo, Miguel A ; Städler, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-7992340c3546661729f06d62ad5a636fa0c33b86c4bb388f36517fbd040729463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Collagenases - chemistry</topic><topic>Collagenases - metabolism</topic><topic>Gelatin - chemistry</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Micromotors</topic><topic>Motors</topic><topic>Silicon Dioxide - chemistry</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Nanying</creatorcontrib><creatorcontrib>Floriano Marcelino, Thaís</creatorcontrib><creatorcontrib>Ade, Carina</creatorcontrib><creatorcontrib>Pendlmayr, Stefan</creatorcontrib><creatorcontrib>Ramos Docampo, Miguel A</creatorcontrib><creatorcontrib>Städler, Brigitte</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Nanying</au><au>Floriano Marcelino, Thaís</au><au>Ade, Carina</au><au>Pendlmayr, Stefan</au><au>Ramos Docampo, Miguel A</au><au>Städler, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagenase motors in gelatine-based hydrogels</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-05-23</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>9935</spage><epage>9943</epage><pages>9935-9943</pages><issn>2040-3364</issn><issn>2040-3372</issn><eissn>2040-3372</eissn><abstract>Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 μm motors achieve similar speeds as high as ∼15 μm s
−1
in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.
Motors equipped with collagenase trapped in polymer brushes exhibit high speeds of up to ∼15 μm s
−1
in stiff gelatine hydrogels when activated with calcium, showing potential as effective carriers for drug delivery across the extracellular matrix.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38690802</pmid><doi>10.1039/d3nr05712g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7335-3945</orcidid><orcidid>https://orcid.org/0000-0002-2714-0164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-05, Vol.16 (2), p.9935-9943 |
issn | 2040-3364 2040-3372 2040-3372 |
language | eng |
recordid | cdi_pubmed_primary_38690802 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Calcium - chemistry Calcium - metabolism Collagenases - chemistry Collagenases - metabolism Gelatin - chemistry Hydrogels Hydrogels - chemistry Micromotors Motors Silicon Dioxide - chemistry Viscosity |
title | Collagenase motors in gelatine-based hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagenase%20motors%20in%20gelatine-based%20hydrogels&rft.jtitle=Nanoscale&rft.au=Wang,%20Nanying&rft.date=2024-05-23&rft.volume=16&rft.issue=2&rft.spage=9935&rft.epage=9943&rft.pages=9935-9943&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr05712g&rft_dat=%3Cproquest_pubme%3E3058538859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058538859&rft_id=info:pmid/38690802&rfr_iscdi=true |