An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows

Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2024-04, Vol.155 (4), p.2817-2835
Hauptverfasser: Fromant, Guillaume, Thorne, Peter D., Hurther, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2835
container_issue 4
container_start_page 2817
container_title The Journal of the Acoustical Society of America
container_volume 155
creator Fromant, Guillaume
Thorne, Peter D.
Hurther, David
description Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.
doi_str_mv 10.1121/10.0025766
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38682912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048768869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-93497c8955175745c5c1f105018147c3ca2b08fba92ddee9cabd9f0b66196c943</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eokvhwg9APvKhFNuxHfu4qoAircSlnCPHmWyNEnvxJP34H_3BeLvLHnt6NaNHjzTzEvKeswvOBf9akjGhGq1fkBVXglVGCfmSrBhjvJJW6zPyBvFPGZWp7WtyVhtthOViRR7XkcK9m0J0c0iRpoHuUohztXN5Dn4EunHb7OI2uEgxTMv4xCEdUqYOERBD3NI5TFBlwDTeQk9vHvqcnE8LFgU9mYZxuacTOFwyTBBnpKE4oQ_7oRpdD7Ew6Q7fkleDGxHeHfOc_P7-7fryqtr8-vHzcr2pfK3EXNla2sYbqxRvVCOVV54PnCnGDZeNr70THTND56zoewDrXdfbgXVac6u9lfU5-XTw3rix3eUwufzQJhfaq_Wm3e-Y1FIL3dzywn48sLuc_i6AczsF9DCOLkI5tK2ZNI02RtuCfj6gPifEDMPJzVm7b2yfx8YK_OHoXboJ-hP6v6ICfDkA6MP89PzndP8Acsagsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048768869</pqid></control><display><type>article</type><title>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Fromant, Guillaume ; Thorne, Peter D. ; Hurther, David</creator><creatorcontrib>Fromant, Guillaume ; Thorne, Peter D. ; Hurther, David</creatorcontrib><description>Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0025766</identifier><identifier>PMID: 38682912</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Acoustics ; Earth Sciences ; Engineering Sciences ; Fluids mechanics ; Geophysics ; Mechanics ; Sciences of the Universe</subject><ispartof>The Journal of the Acoustical Society of America, 2024-04, Vol.155 (4), p.2817-2835</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c352t-93497c8955175745c5c1f105018147c3ca2b08fba92ddee9cabd9f0b66196c943</cites><orcidid>0000-0002-4261-0937 ; 0000-0002-7667-1826 ; 0000-0003-4348-3041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0025766$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>207,208,230,314,780,784,794,885,1565,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38682912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04646267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fromant, Guillaume</creatorcontrib><creatorcontrib>Thorne, Peter D.</creatorcontrib><creatorcontrib>Hurther, David</creatorcontrib><title>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.</description><subject>Acoustics</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Geophysics</subject><subject>Mechanics</subject><subject>Sciences of the Universe</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eokvhwg9APvKhFNuxHfu4qoAircSlnCPHmWyNEnvxJP34H_3BeLvLHnt6NaNHjzTzEvKeswvOBf9akjGhGq1fkBVXglVGCfmSrBhjvJJW6zPyBvFPGZWp7WtyVhtthOViRR7XkcK9m0J0c0iRpoHuUohztXN5Dn4EunHb7OI2uEgxTMv4xCEdUqYOERBD3NI5TFBlwDTeQk9vHvqcnE8LFgU9mYZxuacTOFwyTBBnpKE4oQ_7oRpdD7Ew6Q7fkleDGxHeHfOc_P7-7fryqtr8-vHzcr2pfK3EXNla2sYbqxRvVCOVV54PnCnGDZeNr70THTND56zoewDrXdfbgXVac6u9lfU5-XTw3rix3eUwufzQJhfaq_Wm3e-Y1FIL3dzywn48sLuc_i6AczsF9DCOLkI5tK2ZNI02RtuCfj6gPifEDMPJzVm7b2yfx8YK_OHoXboJ-hP6v6ICfDkA6MP89PzndP8Acsagsg</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Fromant, Guillaume</creator><creator>Thorne, Peter D.</creator><creator>Hurther, David</creator><general>Acoustical Society of America</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4261-0937</orcidid><orcidid>https://orcid.org/0000-0002-7667-1826</orcidid><orcidid>https://orcid.org/0000-0003-4348-3041</orcidid></search><sort><creationdate>202404</creationdate><title>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</title><author>Fromant, Guillaume ; Thorne, Peter D. ; Hurther, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-93497c8955175745c5c1f105018147c3ca2b08fba92ddee9cabd9f0b66196c943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Geophysics</topic><topic>Mechanics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromant, Guillaume</creatorcontrib><creatorcontrib>Thorne, Peter D.</creatorcontrib><creatorcontrib>Hurther, David</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromant, Guillaume</au><au>Thorne, Peter D.</au><au>Hurther, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-04</date><risdate>2024</risdate><volume>155</volume><issue>4</issue><spage>2817</spage><epage>2835</epage><pages>2817-2835</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>38682912</pmid><doi>10.1121/10.0025766</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4261-0937</orcidid><orcidid>https://orcid.org/0000-0002-7667-1826</orcidid><orcidid>https://orcid.org/0000-0003-4348-3041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2024-04, Vol.155 (4), p.2817-2835
issn 0001-4966
1520-8524
language eng
recordid cdi_pubmed_primary_38682912
source AIP Journals Complete; AIP Acoustical Society of America
subjects Acoustics
Earth Sciences
Engineering Sciences
Fluids mechanics
Geophysics
Mechanics
Sciences of the Universe
title An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20examination%20of%20point-particle%20Lagrangian%20simulations%20for%20assessing%20time-resolved%20hydroacoustic%20particle%20flux%20measurements%20in%20sediment-laden%20flows&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Fromant,%20Guillaume&rft.date=2024-04&rft.volume=155&rft.issue=4&rft.spage=2817&rft.epage=2835&rft.pages=2817-2835&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0025766&rft_dat=%3Cproquest_pubme%3E3048768869%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048768869&rft_id=info:pmid/38682912&rfr_iscdi=true