An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows
Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2024-04, Vol.155 (4), p.2817-2835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2835 |
---|---|
container_issue | 4 |
container_start_page | 2817 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 155 |
creator | Fromant, Guillaume Thorne, Peter D. Hurther, David |
description | Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions. |
doi_str_mv | 10.1121/10.0025766 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38682912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3048768869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-93497c8955175745c5c1f105018147c3ca2b08fba92ddee9cabd9f0b66196c943</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eokvhwg9APvKhFNuxHfu4qoAircSlnCPHmWyNEnvxJP34H_3BeLvLHnt6NaNHjzTzEvKeswvOBf9akjGhGq1fkBVXglVGCfmSrBhjvJJW6zPyBvFPGZWp7WtyVhtthOViRR7XkcK9m0J0c0iRpoHuUohztXN5Dn4EunHb7OI2uEgxTMv4xCEdUqYOERBD3NI5TFBlwDTeQk9vHvqcnE8LFgU9mYZxuacTOFwyTBBnpKE4oQ_7oRpdD7Ew6Q7fkleDGxHeHfOc_P7-7fryqtr8-vHzcr2pfK3EXNla2sYbqxRvVCOVV54PnCnGDZeNr70THTND56zoewDrXdfbgXVac6u9lfU5-XTw3rix3eUwufzQJhfaq_Wm3e-Y1FIL3dzywn48sLuc_i6AczsF9DCOLkI5tK2ZNI02RtuCfj6gPifEDMPJzVm7b2yfx8YK_OHoXboJ-hP6v6ICfDkA6MP89PzndP8Acsagsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3048768869</pqid></control><display><type>article</type><title>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Fromant, Guillaume ; Thorne, Peter D. ; Hurther, David</creator><creatorcontrib>Fromant, Guillaume ; Thorne, Peter D. ; Hurther, David</creatorcontrib><description>Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0025766</identifier><identifier>PMID: 38682912</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States: Acoustical Society of America</publisher><subject>Acoustics ; Earth Sciences ; Engineering Sciences ; Fluids mechanics ; Geophysics ; Mechanics ; Sciences of the Universe</subject><ispartof>The Journal of the Acoustical Society of America, 2024-04, Vol.155 (4), p.2817-2835</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c352t-93497c8955175745c5c1f105018147c3ca2b08fba92ddee9cabd9f0b66196c943</cites><orcidid>0000-0002-4261-0937 ; 0000-0002-7667-1826 ; 0000-0003-4348-3041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0025766$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>207,208,230,314,780,784,794,885,1565,4512,27924,27925,76256</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38682912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04646267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fromant, Guillaume</creatorcontrib><creatorcontrib>Thorne, Peter D.</creatorcontrib><creatorcontrib>Hurther, David</creatorcontrib><title>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.</description><subject>Acoustics</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Geophysics</subject><subject>Mechanics</subject><subject>Sciences of the Universe</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0Eokvhwg9APvKhFNuxHfu4qoAircSlnCPHmWyNEnvxJP34H_3BeLvLHnt6NaNHjzTzEvKeswvOBf9akjGhGq1fkBVXglVGCfmSrBhjvJJW6zPyBvFPGZWp7WtyVhtthOViRR7XkcK9m0J0c0iRpoHuUohztXN5Dn4EunHb7OI2uEgxTMv4xCEdUqYOERBD3NI5TFBlwDTeQk9vHvqcnE8LFgU9mYZxuacTOFwyTBBnpKE4oQ_7oRpdD7Ew6Q7fkleDGxHeHfOc_P7-7fryqtr8-vHzcr2pfK3EXNla2sYbqxRvVCOVV54PnCnGDZeNr70THTND56zoewDrXdfbgXVac6u9lfU5-XTw3rix3eUwufzQJhfaq_Wm3e-Y1FIL3dzywn48sLuc_i6AczsF9DCOLkI5tK2ZNI02RtuCfj6gPifEDMPJzVm7b2yfx8YK_OHoXboJ-hP6v6ICfDkA6MP89PzndP8Acsagsg</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Fromant, Guillaume</creator><creator>Thorne, Peter D.</creator><creator>Hurther, David</creator><general>Acoustical Society of America</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4261-0937</orcidid><orcidid>https://orcid.org/0000-0002-7667-1826</orcidid><orcidid>https://orcid.org/0000-0003-4348-3041</orcidid></search><sort><creationdate>202404</creationdate><title>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</title><author>Fromant, Guillaume ; Thorne, Peter D. ; Hurther, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-93497c8955175745c5c1f105018147c3ca2b08fba92ddee9cabd9f0b66196c943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Geophysics</topic><topic>Mechanics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromant, Guillaume</creatorcontrib><creatorcontrib>Thorne, Peter D.</creatorcontrib><creatorcontrib>Hurther, David</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromant, Guillaume</au><au>Thorne, Peter D.</au><au>Hurther, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-04</date><risdate>2024</risdate><volume>155</volume><issue>4</issue><spage>2817</spage><epage>2835</epage><pages>2817-2835</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Accurate modelling and prediction of sediment transport in aquatic environments is essential for sustainable coastal and riverine management. Current capabilities rely on physical process-based numerical models and fine-scale sediment flux measurements. High-resolution hydroacoustic instrumentation has emerged as a promising tool for such measurements. However, challenges arise due to the inherent complexity of ultrasound scattering processes. This study introduces a numerical modelling using a point-particle approach to simulate the echoes backscattered by such instrumentation in sediment-laden flow conditions. The model considers geometric, statistical, particle cloud, and flow-induced effects on sediment velocity, concentration, and flux estimates using an acoustic concentration and velocity profiler as a reference. The model performance is assessed here under unidirectional constant flow conditions in terms of velocity, concentration, and time-resolved sediment flux estimates for a large range of the particles' advection speed and sampled volume sizes. Application to the estimation of the measurement accuracy of sediment flux in these flows is also considered, with a final error on the flux seen to be partially controlled by the residence time of particles within the sampled volumes. The proposed model provides insights into scattering processes and offers a tool for investigating robust sediment flux estimation techniques in various flow conditions.</abstract><cop>United States</cop><pub>Acoustical Society of America</pub><pmid>38682912</pmid><doi>10.1121/10.0025766</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4261-0937</orcidid><orcidid>https://orcid.org/0000-0002-7667-1826</orcidid><orcidid>https://orcid.org/0000-0003-4348-3041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2024-04, Vol.155 (4), p.2817-2835 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_pubmed_primary_38682912 |
source | AIP Journals Complete; AIP Acoustical Society of America |
subjects | Acoustics Earth Sciences Engineering Sciences Fluids mechanics Geophysics Mechanics Sciences of the Universe |
title | An examination of point-particle Lagrangian simulations for assessing time-resolved hydroacoustic particle flux measurements in sediment-laden flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20examination%20of%20point-particle%20Lagrangian%20simulations%20for%20assessing%20time-resolved%20hydroacoustic%20particle%20flux%20measurements%20in%20sediment-laden%20flows&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Fromant,%20Guillaume&rft.date=2024-04&rft.volume=155&rft.issue=4&rft.spage=2817&rft.epage=2835&rft.pages=2817-2835&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0025766&rft_dat=%3Cproquest_pubme%3E3048768869%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3048768869&rft_id=info:pmid/38682912&rfr_iscdi=true |