5.1 μm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries
An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 μm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofib...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-07, p.e2401837 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e2401837 |
container_title | Advanced materials (Weinheim) |
container_volume | |
creator | Liu, Yangxi Wang, Suqing Chen, Weicheng Kong, Wenhan Wang, Shupei Liu, Haixing Ding, Li Ding, Liang-Xin Wang, Haihui |
description | An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 μm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofibres (KANFs) with negatively charged groups bridging metal-organic framework (MOF) particles are served as a rigid skeleton and non-flammable deep eutectic solvent (DES) is selected to be encapsulated into the MOF channels, combined with in-situ polymerization to complete safe electrolyte system with high rigidness and stability. The constructed topology network demonstrates high rigidity (5.4 GPa), high ionic conductivity (0.73 mS cm
at room temperature), good ion-regulated properties, and improved structural stability, contributing to homogenized Li-ion flux, excellent dendrite suppression and prolong cyclic performance for LMB. Additionally, ion regulation influenced the Li deposition behavior, exhibiting a uniform morphology on the Li-metal surface after cycling. According to density-functional theory (DFT), KANFs bridging MOFs as hosts play a vital function in the free-state and fast diffusion dynamics of Li-ions. This work provides an effective strategy for constructing ultrathin robust electrolytes with a novel ionic conduction mode. This article is protected by copyright. All rights reserved. |
doi_str_mv | 10.1002/adma.202401837 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38682617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38682617</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-979b185a83c3d4b8b9ebefa089cde5792fb70970c001eb4021bde515a3409e193</originalsourceid><addsrcrecordid>eNo1kEtOwzAYhC0kREthyxL5Ai6_87SXNGqhUhGilHVlJ39Sozwq21nkApyDg7DiAJyJIGA1o5nRtxhCrjjMOUBwo4pGzQMIIuAiTE_IlMcBZxHIeELOnXsFAJlAckYmoUhEkPB0St7iOf98__po6Lpr2RarvlYeC7o1lSnoU6-cYc9dPfpljbm3XT14pFnXOm_7_GepB7qwpqhMW9GVcp5uDBtZdGdV60q0NDuotsXa0bKzY-kPpm_oA3pV04XyHq1Bd0FOS1U7vPzTGXlZLXfZPds83q2z2w07chCeyVRqLmIlwjwsIi20RI2lAiHzAuNUBqVOQaaQA3DUEQRcjzmPVTi-gFyGM3L9yz32usFif7SmUXbY_x8SfgP3p2NN</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>5.1 μm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yangxi ; Wang, Suqing ; Chen, Weicheng ; Kong, Wenhan ; Wang, Shupei ; Liu, Haixing ; Ding, Li ; Ding, Liang-Xin ; Wang, Haihui</creator><creatorcontrib>Liu, Yangxi ; Wang, Suqing ; Chen, Weicheng ; Kong, Wenhan ; Wang, Shupei ; Liu, Haixing ; Ding, Li ; Ding, Liang-Xin ; Wang, Haihui</creatorcontrib><description>An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 μm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofibres (KANFs) with negatively charged groups bridging metal-organic framework (MOF) particles are served as a rigid skeleton and non-flammable deep eutectic solvent (DES) is selected to be encapsulated into the MOF channels, combined with in-situ polymerization to complete safe electrolyte system with high rigidness and stability. The constructed topology network demonstrates high rigidity (5.4 GPa), high ionic conductivity (0.73 mS cm
at room temperature), good ion-regulated properties, and improved structural stability, contributing to homogenized Li-ion flux, excellent dendrite suppression and prolong cyclic performance for LMB. Additionally, ion regulation influenced the Li deposition behavior, exhibiting a uniform morphology on the Li-metal surface after cycling. According to density-functional theory (DFT), KANFs bridging MOFs as hosts play a vital function in the free-state and fast diffusion dynamics of Li-ions. This work provides an effective strategy for constructing ultrathin robust electrolytes with a novel ionic conduction mode. This article is protected by copyright. All rights reserved.</description><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202401837</identifier><identifier>PMID: 38682617</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-07, p.e2401837</ispartof><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2917-4739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38682617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yangxi</creatorcontrib><creatorcontrib>Wang, Suqing</creatorcontrib><creatorcontrib>Chen, Weicheng</creatorcontrib><creatorcontrib>Kong, Wenhan</creatorcontrib><creatorcontrib>Wang, Shupei</creatorcontrib><creatorcontrib>Liu, Haixing</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Ding, Liang-Xin</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><title>5.1 μm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 μm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofibres (KANFs) with negatively charged groups bridging metal-organic framework (MOF) particles are served as a rigid skeleton and non-flammable deep eutectic solvent (DES) is selected to be encapsulated into the MOF channels, combined with in-situ polymerization to complete safe electrolyte system with high rigidness and stability. The constructed topology network demonstrates high rigidity (5.4 GPa), high ionic conductivity (0.73 mS cm
at room temperature), good ion-regulated properties, and improved structural stability, contributing to homogenized Li-ion flux, excellent dendrite suppression and prolong cyclic performance for LMB. Additionally, ion regulation influenced the Li deposition behavior, exhibiting a uniform morphology on the Li-metal surface after cycling. According to density-functional theory (DFT), KANFs bridging MOFs as hosts play a vital function in the free-state and fast diffusion dynamics of Li-ions. This work provides an effective strategy for constructing ultrathin robust electrolytes with a novel ionic conduction mode. This article is protected by copyright. All rights reserved.</description><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kEtOwzAYhC0kREthyxL5Ai6_87SXNGqhUhGilHVlJ39Sozwq21nkApyDg7DiAJyJIGA1o5nRtxhCrjjMOUBwo4pGzQMIIuAiTE_IlMcBZxHIeELOnXsFAJlAckYmoUhEkPB0St7iOf98__po6Lpr2RarvlYeC7o1lSnoU6-cYc9dPfpljbm3XT14pFnXOm_7_GepB7qwpqhMW9GVcp5uDBtZdGdV60q0NDuotsXa0bKzY-kPpm_oA3pV04XyHq1Bd0FOS1U7vPzTGXlZLXfZPds83q2z2w07chCeyVRqLmIlwjwsIi20RI2lAiHzAuNUBqVOQaaQA3DUEQRcjzmPVTi-gFyGM3L9yz32usFif7SmUXbY_x8SfgP3p2NN</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Liu, Yangxi</creator><creator>Wang, Suqing</creator><creator>Chen, Weicheng</creator><creator>Kong, Wenhan</creator><creator>Wang, Shupei</creator><creator>Liu, Haixing</creator><creator>Ding, Li</creator><creator>Ding, Liang-Xin</creator><creator>Wang, Haihui</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-2917-4739</orcidid></search><sort><creationdate>20240701</creationdate><title>5.1 μm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries</title><author>Liu, Yangxi ; Wang, Suqing ; Chen, Weicheng ; Kong, Wenhan ; Wang, Shupei ; Liu, Haixing ; Ding, Li ; Ding, Liang-Xin ; Wang, Haihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-979b185a83c3d4b8b9ebefa089cde5792fb70970c001eb4021bde515a3409e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yangxi</creatorcontrib><creatorcontrib>Wang, Suqing</creatorcontrib><creatorcontrib>Chen, Weicheng</creatorcontrib><creatorcontrib>Kong, Wenhan</creatorcontrib><creatorcontrib>Wang, Shupei</creatorcontrib><creatorcontrib>Liu, Haixing</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Ding, Liang-Xin</creatorcontrib><creatorcontrib>Wang, Haihui</creatorcontrib><collection>PubMed</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yangxi</au><au>Wang, Suqing</au><au>Chen, Weicheng</au><au>Kong, Wenhan</au><au>Wang, Shupei</au><au>Liu, Haixing</au><au>Ding, Li</au><au>Ding, Liang-Xin</au><au>Wang, Haihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5.1 μm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-07-01</date><risdate>2024</risdate><spage>e2401837</spage><pages>e2401837-</pages><eissn>1521-4095</eissn><abstract>An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 μm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofibres (KANFs) with negatively charged groups bridging metal-organic framework (MOF) particles are served as a rigid skeleton and non-flammable deep eutectic solvent (DES) is selected to be encapsulated into the MOF channels, combined with in-situ polymerization to complete safe electrolyte system with high rigidness and stability. The constructed topology network demonstrates high rigidity (5.4 GPa), high ionic conductivity (0.73 mS cm
at room temperature), good ion-regulated properties, and improved structural stability, contributing to homogenized Li-ion flux, excellent dendrite suppression and prolong cyclic performance for LMB. Additionally, ion regulation influenced the Li deposition behavior, exhibiting a uniform morphology on the Li-metal surface after cycling. According to density-functional theory (DFT), KANFs bridging MOFs as hosts play a vital function in the free-state and fast diffusion dynamics of Li-ions. This work provides an effective strategy for constructing ultrathin robust electrolytes with a novel ionic conduction mode. This article is protected by copyright. All rights reserved.</abstract><cop>Germany</cop><pmid>38682617</pmid><doi>10.1002/adma.202401837</doi><orcidid>https://orcid.org/0000-0002-2917-4739</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1521-4095 |
ispartof | Advanced materials (Weinheim), 2024-07, p.e2401837 |
issn | 1521-4095 |
language | eng |
recordid | cdi_pubmed_primary_38682617 |
source | Wiley Online Library Journals Frontfile Complete |
title | 5.1 μm Ion-Regulated Rigid Quasi-Solid Electrolyte Constructed by Bridging Fast Li-Ion Transfer Channels for Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5.1%C2%A0%CE%BCm%20Ion-Regulated%20Rigid%20Quasi-Solid%20Electrolyte%20Constructed%20by%20Bridging%20Fast%20Li-Ion%20Transfer%20Channels%20for%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Yangxi&rft.date=2024-07-01&rft.spage=e2401837&rft.pages=e2401837-&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202401837&rft_dat=%3Cpubmed%3E38682617%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38682617&rfr_iscdi=true |