Exploring the role of domesticated resistors in batch-mode microbial desalination cell
Microbial Desalination Cells (MDCs) are an electrochemical process that harnesses microbial reactions to simultaneously treat wastewater, generate power, and desalinate water. By utilizing microbial decomposition of organic pollutants in wastewater, MDCs offer a sustainable and energy-efficient alte...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2024-06, Vol.358, p.142173-142173, Article 142173 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial Desalination Cells (MDCs) are an electrochemical process that harnesses microbial reactions to simultaneously treat wastewater, generate power, and desalinate water. By utilizing microbial decomposition of organic pollutants in wastewater, MDCs offer a sustainable and energy-efficient alternative to conventional desalination technologies. The technical framework of MDCs emphasizes the integration of water-electricity principles, making them promising for future applications in seawater desalination, wastewater treatment, resource recovery, and water softening. This study investigates the impact of acclimation resistance, represented by four different domesticated resistors values of 1 kΩ, 100Ω, 51Ω, and 10Ω, on the performance of MDCs. Larger acclimation resistors exhibit higher power performance, with the case of 100Ω achieving a power density of 0.33 mA/m2 and the case of 1 kΩ achieving the highest current density of 1.90 mA/m2. Furthermore, the case with an acclimation resistance of 1 kΩ exhibits superior performance in terms of chemical oxygen demand (COD) removal, achieving a removal rate of 76.3% on day 1. Conversely, the case with an acclimation resistance of 10Ω demonstrates the best desalination performance, achieving a desalination rate of 9.0%. It should be noted that the optimal performance in terms of COD removal and desalination capacity varies due to the various operational mechanisms involved. . The findings of this study provide valuable insights for enhancing the performance of MDCs in future applications, enabling further improvements in their efficiency and effectiveness.
[Display omitted]
•Influence of external load on water and energy production is explained.•MDCs offer energy-efficient substitutes by harnessing microbial reactions.•1 KΩ resistor enhances power output and improves COD degradation.•For desalination performance, a 10Ω resistor achieves the best results. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2024.142173 |