Machine learning approach to detect dynamical states from recurrence measures
We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms: Logistic Regression, Random Forest, and Support Vector Machine for...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2024-04, Vol.34 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 34 |
creator | Thakur, Dheeraja Mohan, Athul Ambika, G. Meena, Chandrakala |
description | We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms: Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing, we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyperchaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her, from the data of their light curves. We also indicate how the algorithms can be trained to classify data from discrete systems. |
doi_str_mv | 10.1063/5.0196382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38658051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046516498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c92b3a5b50a46739becf4b925d6d78a10f8a318a73e7383ef261ff19e1bdeca53</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgSgUBv4AssQCSCl2HDv2iCq-pFYsMEcX5wKpEqfYydB_j6sWBgams06PXp9eQi44m3GmxJ2cMW6U0OkBOeFMmyRXOj3cvmWWcMnYhJyGsGKM8VTIYzIRWknNJD8hyyXYz8YhbRG8a9wHhfXa93FJh55WOKAdaLVx0DUWWhoGGDDQ2vcd9WhH79FZpB1CGD2GM3JUQxvwfD-n5P3x4W3-nCxen17m94vEikwMiTVpKUCWkkGmcmFKtHVWmlRWqso1cFZrEFxDLjAXWmCdKl7X3CAvK7QgxZRc73LjqV8jhqHommCxbcFhP4ZCsExJrjKjI736Q1f96F28bqvi91yYPKqbnbK-D8FjXax904HfFJwV244LWew7jvZynziWHVa_8qfUCG53INgm9tX07p-0bx4Mg0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044671397</pqid></control><display><type>article</type><title>Machine learning approach to detect dynamical states from recurrence measures</title><source>AIP Journals Complete</source><creator>Thakur, Dheeraja ; Mohan, Athul ; Ambika, G. ; Meena, Chandrakala</creator><creatorcontrib>Thakur, Dheeraja ; Mohan, Athul ; Ambika, G. ; Meena, Chandrakala</creatorcontrib><description>We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms: Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing, we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyperchaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her, from the data of their light curves. We also indicate how the algorithms can be trained to classify data from discrete systems.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0196382</identifier><identifier>PMID: 38658051</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Classification ; Discrete systems ; Dynamical systems ; Light curve ; Machine learning ; Nonlinear systems ; Support vector machines ; Synthetic data ; Time series ; Variable stars</subject><ispartof>Chaos (Woodbury, N.Y.), 2024-04, Vol.34 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-c92b3a5b50a46739becf4b925d6d78a10f8a318a73e7383ef261ff19e1bdeca53</cites><orcidid>0000-0001-7303-9692 ; 0009-0009-5177-2776 ; 0000-0003-4340-5561 ; 0009-0005-5244-8311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,4500,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38658051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thakur, Dheeraja</creatorcontrib><creatorcontrib>Mohan, Athul</creatorcontrib><creatorcontrib>Ambika, G.</creatorcontrib><creatorcontrib>Meena, Chandrakala</creatorcontrib><title>Machine learning approach to detect dynamical states from recurrence measures</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms: Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing, we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyperchaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her, from the data of their light curves. We also indicate how the algorithms can be trained to classify data from discrete systems.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Discrete systems</subject><subject>Dynamical systems</subject><subject>Light curve</subject><subject>Machine learning</subject><subject>Nonlinear systems</subject><subject>Support vector machines</subject><subject>Synthetic data</subject><subject>Time series</subject><subject>Variable stars</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgSgUBv4AssQCSCl2HDv2iCq-pFYsMEcX5wKpEqfYydB_j6sWBgams06PXp9eQi44m3GmxJ2cMW6U0OkBOeFMmyRXOj3cvmWWcMnYhJyGsGKM8VTIYzIRWknNJD8hyyXYz8YhbRG8a9wHhfXa93FJh55WOKAdaLVx0DUWWhoGGDDQ2vcd9WhH79FZpB1CGD2GM3JUQxvwfD-n5P3x4W3-nCxen17m94vEikwMiTVpKUCWkkGmcmFKtHVWmlRWqso1cFZrEFxDLjAXWmCdKl7X3CAvK7QgxZRc73LjqV8jhqHommCxbcFhP4ZCsExJrjKjI736Q1f96F28bqvi91yYPKqbnbK-D8FjXax904HfFJwV244LWew7jvZynziWHVa_8qfUCG53INgm9tX07p-0bx4Mg0o</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Thakur, Dheeraja</creator><creator>Mohan, Athul</creator><creator>Ambika, G.</creator><creator>Meena, Chandrakala</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7303-9692</orcidid><orcidid>https://orcid.org/0009-0009-5177-2776</orcidid><orcidid>https://orcid.org/0000-0003-4340-5561</orcidid><orcidid>https://orcid.org/0009-0005-5244-8311</orcidid></search><sort><creationdate>202404</creationdate><title>Machine learning approach to detect dynamical states from recurrence measures</title><author>Thakur, Dheeraja ; Mohan, Athul ; Ambika, G. ; Meena, Chandrakala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c92b3a5b50a46739becf4b925d6d78a10f8a318a73e7383ef261ff19e1bdeca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Discrete systems</topic><topic>Dynamical systems</topic><topic>Light curve</topic><topic>Machine learning</topic><topic>Nonlinear systems</topic><topic>Support vector machines</topic><topic>Synthetic data</topic><topic>Time series</topic><topic>Variable stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakur, Dheeraja</creatorcontrib><creatorcontrib>Mohan, Athul</creatorcontrib><creatorcontrib>Ambika, G.</creatorcontrib><creatorcontrib>Meena, Chandrakala</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakur, Dheeraja</au><au>Mohan, Athul</au><au>Ambika, G.</au><au>Meena, Chandrakala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approach to detect dynamical states from recurrence measures</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2024-04</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms: Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing, we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyperchaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her, from the data of their light curves. We also indicate how the algorithms can be trained to classify data from discrete systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38658051</pmid><doi>10.1063/5.0196382</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7303-9692</orcidid><orcidid>https://orcid.org/0009-0009-5177-2776</orcidid><orcidid>https://orcid.org/0000-0003-4340-5561</orcidid><orcidid>https://orcid.org/0009-0005-5244-8311</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2024-04, Vol.34 (4) |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_pubmed_primary_38658051 |
source | AIP Journals Complete |
subjects | Algorithms Classification Discrete systems Dynamical systems Light curve Machine learning Nonlinear systems Support vector machines Synthetic data Time series Variable stars |
title | Machine learning approach to detect dynamical states from recurrence measures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approach%20to%20detect%20dynamical%20states%20from%20recurrence%20measures&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Thakur,%20Dheeraja&rft.date=2024-04&rft.volume=34&rft.issue=4&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0196382&rft_dat=%3Cproquest_pubme%3E3046516498%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044671397&rft_id=info:pmid/38658051&rfr_iscdi=true |