Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates
Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-04, Vol.160 (16) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Ranieri, Umbertoluca del Rosso, Leonardo Bove, Livia Eleonora Celli, Milva Colognesi, Daniele Gaal, Richard Hansen, Thomas C. Koza, Michael Marek Ulivi, Lorenzo |
description | Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed. |
doi_str_mv | 10.1063/5.0200867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38647309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045114074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-44fb0040eb587ea3ee41647a323c1d39c849a167200eeb51bc2bafe0e05e7e373</originalsourceid><addsrcrecordid>eNp90UFr2zAUB3AxNtY07WFfYAh2WQtOnyzZso-ltGsg0Et32UU8y8-Ji22lkl3It5_SpB30sNMD8eOv9_gz9k3AQkAur7IFpABFrj-xmYCiTHRewmc2A0hFUuaQn7DTEJ4AQOhUfWUnssiVllDO2J8V-jUlFtfEnbXTFsfWDRyHmj9POIxTz-vdgH1rA3cN3-xq79Y08N51ZKeOAm8HHpZLbjscNx5HejVxhjP2pcEu0Plxztnvu9vHm_tk9fBreXO9SqzUekyUaioABVRlhSaURErE7VCm0opalrZQJYpcxwspGlHZtMKGgCAjTVLLObs45G6wM1vf9uh3xmFr7q9XZv8GqgCQungR0f482K13zxOF0fRtsNR1OJCbgpGgMiEUaBXpjw_0yU1-iJfslVQg0jz997n1LgRPzfsGAsy-HJOZYznRfj8mTlVP9bt8ayOCywMIth1fi_hP2l_TC5TE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043401262</pqid></control><display><type>article</type><title>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</title><source>AIP Journals Complete</source><creator>Ranieri, Umbertoluca ; del Rosso, Leonardo ; Bove, Livia Eleonora ; Celli, Milva ; Colognesi, Daniele ; Gaal, Richard ; Hansen, Thomas C. ; Koza, Michael Marek ; Ulivi, Lorenzo</creator><creatorcontrib>Ranieri, Umbertoluca ; del Rosso, Leonardo ; Bove, Livia Eleonora ; Celli, Milva ; Colognesi, Daniele ; Gaal, Richard ; Hansen, Thomas C. ; Koza, Michael Marek ; Ulivi, Lorenzo</creatorcontrib><description>Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0200867</identifier><identifier>PMID: 38647309</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cages ; Chemical Physics ; Exact solutions ; Gas hydrates ; Harmonic oscillators ; Hydrogen ; Low temperature ; Momentum transfer ; Neutron scattering ; Neutrons ; Physics ; Qualitative analysis ; Schrodinger equation ; Water chemistry ; Wave functions</subject><ispartof>The Journal of chemical physics, 2024-04, Vol.160 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-44fb0040eb587ea3ee41647a323c1d39c849a167200eeb51bc2bafe0e05e7e373</cites><orcidid>0000-0002-3541-0419 ; 0000-0001-5181-423X ; 0000-0002-7134-4121 ; 0000-0002-5133-8584 ; 0000-0001-5597-8864 ; 0000-0003-1386-8207 ; 0000-0002-0537-6029 ; 0000-0003-2026-6132 ; 0000-0003-4611-2393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0200867$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38647309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04800378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranieri, Umbertoluca</creatorcontrib><creatorcontrib>del Rosso, Leonardo</creatorcontrib><creatorcontrib>Bove, Livia Eleonora</creatorcontrib><creatorcontrib>Celli, Milva</creatorcontrib><creatorcontrib>Colognesi, Daniele</creatorcontrib><creatorcontrib>Gaal, Richard</creatorcontrib><creatorcontrib>Hansen, Thomas C.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Ulivi, Lorenzo</creatorcontrib><title>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.</description><subject>Cages</subject><subject>Chemical Physics</subject><subject>Exact solutions</subject><subject>Gas hydrates</subject><subject>Harmonic oscillators</subject><subject>Hydrogen</subject><subject>Low temperature</subject><subject>Momentum transfer</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Physics</subject><subject>Qualitative analysis</subject><subject>Schrodinger equation</subject><subject>Water chemistry</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90UFr2zAUB3AxNtY07WFfYAh2WQtOnyzZso-ltGsg0Et32UU8y8-Ji22lkl3It5_SpB30sNMD8eOv9_gz9k3AQkAur7IFpABFrj-xmYCiTHRewmc2A0hFUuaQn7DTEJ4AQOhUfWUnssiVllDO2J8V-jUlFtfEnbXTFsfWDRyHmj9POIxTz-vdgH1rA3cN3-xq79Y08N51ZKeOAm8HHpZLbjscNx5HejVxhjP2pcEu0Plxztnvu9vHm_tk9fBreXO9SqzUekyUaioABVRlhSaURErE7VCm0opalrZQJYpcxwspGlHZtMKGgCAjTVLLObs45G6wM1vf9uh3xmFr7q9XZv8GqgCQungR0f482K13zxOF0fRtsNR1OJCbgpGgMiEUaBXpjw_0yU1-iJfslVQg0jz997n1LgRPzfsGAsy-HJOZYznRfj8mTlVP9bt8ayOCywMIth1fi_hP2l_TC5TE</recordid><startdate>20240428</startdate><enddate>20240428</enddate><creator>Ranieri, Umbertoluca</creator><creator>del Rosso, Leonardo</creator><creator>Bove, Livia Eleonora</creator><creator>Celli, Milva</creator><creator>Colognesi, Daniele</creator><creator>Gaal, Richard</creator><creator>Hansen, Thomas C.</creator><creator>Koza, Michael Marek</creator><creator>Ulivi, Lorenzo</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3541-0419</orcidid><orcidid>https://orcid.org/0000-0001-5181-423X</orcidid><orcidid>https://orcid.org/0000-0002-7134-4121</orcidid><orcidid>https://orcid.org/0000-0002-5133-8584</orcidid><orcidid>https://orcid.org/0000-0001-5597-8864</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-0537-6029</orcidid><orcidid>https://orcid.org/0000-0003-2026-6132</orcidid><orcidid>https://orcid.org/0000-0003-4611-2393</orcidid></search><sort><creationdate>20240428</creationdate><title>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</title><author>Ranieri, Umbertoluca ; del Rosso, Leonardo ; Bove, Livia Eleonora ; Celli, Milva ; Colognesi, Daniele ; Gaal, Richard ; Hansen, Thomas C. ; Koza, Michael Marek ; Ulivi, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-44fb0040eb587ea3ee41647a323c1d39c849a167200eeb51bc2bafe0e05e7e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cages</topic><topic>Chemical Physics</topic><topic>Exact solutions</topic><topic>Gas hydrates</topic><topic>Harmonic oscillators</topic><topic>Hydrogen</topic><topic>Low temperature</topic><topic>Momentum transfer</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Physics</topic><topic>Qualitative analysis</topic><topic>Schrodinger equation</topic><topic>Water chemistry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranieri, Umbertoluca</creatorcontrib><creatorcontrib>del Rosso, Leonardo</creatorcontrib><creatorcontrib>Bove, Livia Eleonora</creatorcontrib><creatorcontrib>Celli, Milva</creatorcontrib><creatorcontrib>Colognesi, Daniele</creatorcontrib><creatorcontrib>Gaal, Richard</creatorcontrib><creatorcontrib>Hansen, Thomas C.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Ulivi, Lorenzo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranieri, Umbertoluca</au><au>del Rosso, Leonardo</au><au>Bove, Livia Eleonora</au><au>Celli, Milva</au><au>Colognesi, Daniele</au><au>Gaal, Richard</au><au>Hansen, Thomas C.</au><au>Koza, Michael Marek</au><au>Ulivi, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-04-28</date><risdate>2024</risdate><volume>160</volume><issue>16</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38647309</pmid><doi>10.1063/5.0200867</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3541-0419</orcidid><orcidid>https://orcid.org/0000-0001-5181-423X</orcidid><orcidid>https://orcid.org/0000-0002-7134-4121</orcidid><orcidid>https://orcid.org/0000-0002-5133-8584</orcidid><orcidid>https://orcid.org/0000-0001-5597-8864</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-0537-6029</orcidid><orcidid>https://orcid.org/0000-0003-2026-6132</orcidid><orcidid>https://orcid.org/0000-0003-4611-2393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-04, Vol.160 (16) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_38647309 |
source | AIP Journals Complete |
subjects | Cages Chemical Physics Exact solutions Gas hydrates Harmonic oscillators Hydrogen Low temperature Momentum transfer Neutron scattering Neutrons Physics Qualitative analysis Schrodinger equation Water chemistry Wave functions |
title | Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-cage%20occupation%20and%20quantum%20dynamics%20of%20hydrogen%20molecules%20in%20sII%20clathrate%20hydrates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ranieri,%20Umbertoluca&rft.date=2024-04-28&rft.volume=160&rft.issue=16&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0200867&rft_dat=%3Cproquest_pubme%3E3045114074%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043401262&rft_id=info:pmid/38647309&rfr_iscdi=true |