Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates

Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-04, Vol.160 (16)
Hauptverfasser: Ranieri, Umbertoluca, del Rosso, Leonardo, Bove, Livia Eleonora, Celli, Milva, Colognesi, Daniele, Gaal, Richard, Hansen, Thomas C., Koza, Michael Marek, Ulivi, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Ranieri, Umbertoluca
del Rosso, Leonardo
Bove, Livia Eleonora
Celli, Milva
Colognesi, Daniele
Gaal, Richard
Hansen, Thomas C.
Koza, Michael Marek
Ulivi, Lorenzo
description Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.
doi_str_mv 10.1063/5.0200867
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38647309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3045114074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-44fb0040eb587ea3ee41647a323c1d39c849a167200eeb51bc2bafe0e05e7e373</originalsourceid><addsrcrecordid>eNp90UFr2zAUB3AxNtY07WFfYAh2WQtOnyzZso-ltGsg0Et32UU8y8-Ji22lkl3It5_SpB30sNMD8eOv9_gz9k3AQkAur7IFpABFrj-xmYCiTHRewmc2A0hFUuaQn7DTEJ4AQOhUfWUnssiVllDO2J8V-jUlFtfEnbXTFsfWDRyHmj9POIxTz-vdgH1rA3cN3-xq79Y08N51ZKeOAm8HHpZLbjscNx5HejVxhjP2pcEu0Plxztnvu9vHm_tk9fBreXO9SqzUekyUaioABVRlhSaURErE7VCm0opalrZQJYpcxwspGlHZtMKGgCAjTVLLObs45G6wM1vf9uh3xmFr7q9XZv8GqgCQungR0f482K13zxOF0fRtsNR1OJCbgpGgMiEUaBXpjw_0yU1-iJfslVQg0jz997n1LgRPzfsGAsy-HJOZYznRfj8mTlVP9bt8ayOCywMIth1fi_hP2l_TC5TE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3043401262</pqid></control><display><type>article</type><title>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</title><source>AIP Journals Complete</source><creator>Ranieri, Umbertoluca ; del Rosso, Leonardo ; Bove, Livia Eleonora ; Celli, Milva ; Colognesi, Daniele ; Gaal, Richard ; Hansen, Thomas C. ; Koza, Michael Marek ; Ulivi, Lorenzo</creator><creatorcontrib>Ranieri, Umbertoluca ; del Rosso, Leonardo ; Bove, Livia Eleonora ; Celli, Milva ; Colognesi, Daniele ; Gaal, Richard ; Hansen, Thomas C. ; Koza, Michael Marek ; Ulivi, Lorenzo</creatorcontrib><description>Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0200867</identifier><identifier>PMID: 38647309</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cages ; Chemical Physics ; Exact solutions ; Gas hydrates ; Harmonic oscillators ; Hydrogen ; Low temperature ; Momentum transfer ; Neutron scattering ; Neutrons ; Physics ; Qualitative analysis ; Schrodinger equation ; Water chemistry ; Wave functions</subject><ispartof>The Journal of chemical physics, 2024-04, Vol.160 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-44fb0040eb587ea3ee41647a323c1d39c849a167200eeb51bc2bafe0e05e7e373</cites><orcidid>0000-0002-3541-0419 ; 0000-0001-5181-423X ; 0000-0002-7134-4121 ; 0000-0002-5133-8584 ; 0000-0001-5597-8864 ; 0000-0003-1386-8207 ; 0000-0002-0537-6029 ; 0000-0003-2026-6132 ; 0000-0003-4611-2393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0200867$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38647309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04800378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranieri, Umbertoluca</creatorcontrib><creatorcontrib>del Rosso, Leonardo</creatorcontrib><creatorcontrib>Bove, Livia Eleonora</creatorcontrib><creatorcontrib>Celli, Milva</creatorcontrib><creatorcontrib>Colognesi, Daniele</creatorcontrib><creatorcontrib>Gaal, Richard</creatorcontrib><creatorcontrib>Hansen, Thomas C.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Ulivi, Lorenzo</creatorcontrib><title>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.</description><subject>Cages</subject><subject>Chemical Physics</subject><subject>Exact solutions</subject><subject>Gas hydrates</subject><subject>Harmonic oscillators</subject><subject>Hydrogen</subject><subject>Low temperature</subject><subject>Momentum transfer</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Physics</subject><subject>Qualitative analysis</subject><subject>Schrodinger equation</subject><subject>Water chemistry</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90UFr2zAUB3AxNtY07WFfYAh2WQtOnyzZso-ltGsg0Et32UU8y8-Ji22lkl3It5_SpB30sNMD8eOv9_gz9k3AQkAur7IFpABFrj-xmYCiTHRewmc2A0hFUuaQn7DTEJ4AQOhUfWUnssiVllDO2J8V-jUlFtfEnbXTFsfWDRyHmj9POIxTz-vdgH1rA3cN3-xq79Y08N51ZKeOAm8HHpZLbjscNx5HejVxhjP2pcEu0Plxztnvu9vHm_tk9fBreXO9SqzUekyUaioABVRlhSaURErE7VCm0opalrZQJYpcxwspGlHZtMKGgCAjTVLLObs45G6wM1vf9uh3xmFr7q9XZv8GqgCQungR0f482K13zxOF0fRtsNR1OJCbgpGgMiEUaBXpjw_0yU1-iJfslVQg0jz997n1LgRPzfsGAsy-HJOZYznRfj8mTlVP9bt8ayOCywMIth1fi_hP2l_TC5TE</recordid><startdate>20240428</startdate><enddate>20240428</enddate><creator>Ranieri, Umbertoluca</creator><creator>del Rosso, Leonardo</creator><creator>Bove, Livia Eleonora</creator><creator>Celli, Milva</creator><creator>Colognesi, Daniele</creator><creator>Gaal, Richard</creator><creator>Hansen, Thomas C.</creator><creator>Koza, Michael Marek</creator><creator>Ulivi, Lorenzo</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3541-0419</orcidid><orcidid>https://orcid.org/0000-0001-5181-423X</orcidid><orcidid>https://orcid.org/0000-0002-7134-4121</orcidid><orcidid>https://orcid.org/0000-0002-5133-8584</orcidid><orcidid>https://orcid.org/0000-0001-5597-8864</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-0537-6029</orcidid><orcidid>https://orcid.org/0000-0003-2026-6132</orcidid><orcidid>https://orcid.org/0000-0003-4611-2393</orcidid></search><sort><creationdate>20240428</creationdate><title>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</title><author>Ranieri, Umbertoluca ; del Rosso, Leonardo ; Bove, Livia Eleonora ; Celli, Milva ; Colognesi, Daniele ; Gaal, Richard ; Hansen, Thomas C. ; Koza, Michael Marek ; Ulivi, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-44fb0040eb587ea3ee41647a323c1d39c849a167200eeb51bc2bafe0e05e7e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cages</topic><topic>Chemical Physics</topic><topic>Exact solutions</topic><topic>Gas hydrates</topic><topic>Harmonic oscillators</topic><topic>Hydrogen</topic><topic>Low temperature</topic><topic>Momentum transfer</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Physics</topic><topic>Qualitative analysis</topic><topic>Schrodinger equation</topic><topic>Water chemistry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranieri, Umbertoluca</creatorcontrib><creatorcontrib>del Rosso, Leonardo</creatorcontrib><creatorcontrib>Bove, Livia Eleonora</creatorcontrib><creatorcontrib>Celli, Milva</creatorcontrib><creatorcontrib>Colognesi, Daniele</creatorcontrib><creatorcontrib>Gaal, Richard</creatorcontrib><creatorcontrib>Hansen, Thomas C.</creatorcontrib><creatorcontrib>Koza, Michael Marek</creatorcontrib><creatorcontrib>Ulivi, Lorenzo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranieri, Umbertoluca</au><au>del Rosso, Leonardo</au><au>Bove, Livia Eleonora</au><au>Celli, Milva</au><au>Colognesi, Daniele</au><au>Gaal, Richard</au><au>Hansen, Thomas C.</au><au>Koza, Michael Marek</au><au>Ulivi, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-04-28</date><risdate>2024</risdate><volume>160</volume><issue>16</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38647309</pmid><doi>10.1063/5.0200867</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3541-0419</orcidid><orcidid>https://orcid.org/0000-0001-5181-423X</orcidid><orcidid>https://orcid.org/0000-0002-7134-4121</orcidid><orcidid>https://orcid.org/0000-0002-5133-8584</orcidid><orcidid>https://orcid.org/0000-0001-5597-8864</orcidid><orcidid>https://orcid.org/0000-0003-1386-8207</orcidid><orcidid>https://orcid.org/0000-0002-0537-6029</orcidid><orcidid>https://orcid.org/0000-0003-2026-6132</orcidid><orcidid>https://orcid.org/0000-0003-4611-2393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-04, Vol.160 (16)
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_38647309
source AIP Journals Complete
subjects Cages
Chemical Physics
Exact solutions
Gas hydrates
Harmonic oscillators
Hydrogen
Low temperature
Momentum transfer
Neutron scattering
Neutrons
Physics
Qualitative analysis
Schrodinger equation
Water chemistry
Wave functions
title Large-cage occupation and quantum dynamics of hydrogen molecules in sII clathrate hydrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-cage%20occupation%20and%20quantum%20dynamics%20of%20hydrogen%20molecules%20in%20sII%20clathrate%20hydrates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ranieri,%20Umbertoluca&rft.date=2024-04-28&rft.volume=160&rft.issue=16&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0200867&rft_dat=%3Cproquest_pubme%3E3045114074%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3043401262&rft_id=info:pmid/38647309&rfr_iscdi=true