Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold

Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1344-1354
Hauptverfasser: Peng, Bolin, Bi, Luzheng, Wang, Zhi, Feleke, Aberham Genetu, Fei, Weijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1354
container_issue
container_start_page 1344
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Peng, Bolin
Bi, Luzheng
Wang, Zhi
Feleke, Aberham Genetu
Fei, Weijie
description Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.
doi_str_mv 10.1109/TNSRE.2024.3379451
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38502615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475535</ieee_id><doaj_id>oai_doaj_org_article_f800225595b547f88f3ed403bc9b6000</doaj_id><sourcerecordid>2972701959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</originalsourceid><addsrcrecordid>eNpdkUuP0zAUhSMEYh7wBxBCkdjMJsWvG8dLVApU6gAapmJpOc5NcdXYHTutBL8e98EIsbJ1z3fOtXWK4hUlE0qJenf_5fvdbMIIExPOpRJAnxSXFKCpCKPk6eHORSU4IxfFVUprQqisQT4vLngDhNUULovfd6HdpbH8gDZ0zq_K0JfL7RZjtXBDW96GPQ7os-4i2tEFXy59h7GchpV3o9tjVtIYzUn74caf5dzvTXQmm76ZccToU-l8ORta7I4bbo13fdh0L4pnvdkkfHk-r4vlx9n99HO1-PppPn2_qKyo2VjZWjXYQdsIXktLml4JqQBAssZ0qs2zugckBAyRHJXtG4E1V7UUzFrbcX5dzE-5XTBrvY1uMPGXDsbp4yDElTZxdHaDum8IYQxAQQtC9k3Tc-wE4a3NiwghOevmlLWN4WGHadSDSxY3G-Mx7JJmSjJJqAKV0bf_oeuwiz7_NFMKOBVQQ6bYibIxpBSxf3wgJfrQsj62rA8t63PL2fTmHL1rB-weLX9rzcDrE-AQ8Z9EIQE48D_V0KrN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995314565</pqid></control><display><type>article</type><title>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peng, Bolin ; Bi, Luzheng ; Wang, Zhi ; Feleke, Aberham Genetu ; Fei, Weijie</creator><creatorcontrib>Peng, Bolin ; Bi, Luzheng ; Wang, Zhi ; Feleke, Aberham Genetu ; Fei, Weijie</creatorcontrib><description>Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3379451</identifier><identifier>PMID: 38502615</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>brain functional connectivity ; Brain modeling ; Brain-Computer Interfaces ; Cognition ; Cognitive ability ; cognitive distraction ; Data models ; Datasets ; Decoding ; EEG ; Electroencephalography ; Electroencephalography (EEG) ; Electroencephalography - methods ; Embedding ; hand movement decoding ; Human-computer interface ; Humans ; Invariants ; Manifolds ; Motors ; Movement ; neural manifold ; Neural networks ; Prostheses ; Prosthetics ; Task analysis ; Upper Extremity</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1344-1354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</citedby><cites>FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</cites><orcidid>0000-0001-8986-3379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38502615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Bolin</creatorcontrib><creatorcontrib>Bi, Luzheng</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Feleke, Aberham Genetu</creatorcontrib><creatorcontrib>Fei, Weijie</creatorcontrib><title>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.</description><subject>brain functional connectivity</subject><subject>Brain modeling</subject><subject>Brain-Computer Interfaces</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>cognitive distraction</subject><subject>Data models</subject><subject>Datasets</subject><subject>Decoding</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography (EEG)</subject><subject>Electroencephalography - methods</subject><subject>Embedding</subject><subject>hand movement decoding</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Motors</subject><subject>Movement</subject><subject>neural manifold</subject><subject>Neural networks</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Task analysis</subject><subject>Upper Extremity</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUuP0zAUhSMEYh7wBxBCkdjMJsWvG8dLVApU6gAapmJpOc5NcdXYHTutBL8e98EIsbJ1z3fOtXWK4hUlE0qJenf_5fvdbMIIExPOpRJAnxSXFKCpCKPk6eHORSU4IxfFVUprQqisQT4vLngDhNUULovfd6HdpbH8gDZ0zq_K0JfL7RZjtXBDW96GPQ7os-4i2tEFXy59h7GchpV3o9tjVtIYzUn74caf5dzvTXQmm76ZccToU-l8ORta7I4bbo13fdh0L4pnvdkkfHk-r4vlx9n99HO1-PppPn2_qKyo2VjZWjXYQdsIXktLml4JqQBAssZ0qs2zugckBAyRHJXtG4E1V7UUzFrbcX5dzE-5XTBrvY1uMPGXDsbp4yDElTZxdHaDum8IYQxAQQtC9k3Tc-wE4a3NiwghOevmlLWN4WGHadSDSxY3G-Mx7JJmSjJJqAKV0bf_oeuwiz7_NFMKOBVQQ6bYibIxpBSxf3wgJfrQsj62rA8t63PL2fTmHL1rB-weLX9rzcDrE-AQ8Z9EIQE48D_V0KrN</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Peng, Bolin</creator><creator>Bi, Luzheng</creator><creator>Wang, Zhi</creator><creator>Feleke, Aberham Genetu</creator><creator>Fei, Weijie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8986-3379</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</title><author>Peng, Bolin ; Bi, Luzheng ; Wang, Zhi ; Feleke, Aberham Genetu ; Fei, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain functional connectivity</topic><topic>Brain modeling</topic><topic>Brain-Computer Interfaces</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>cognitive distraction</topic><topic>Data models</topic><topic>Datasets</topic><topic>Decoding</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography (EEG)</topic><topic>Electroencephalography - methods</topic><topic>Embedding</topic><topic>hand movement decoding</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Motors</topic><topic>Movement</topic><topic>neural manifold</topic><topic>Neural networks</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Task analysis</topic><topic>Upper Extremity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Bolin</creatorcontrib><creatorcontrib>Bi, Luzheng</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Feleke, Aberham Genetu</creatorcontrib><creatorcontrib>Fei, Weijie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Bolin</au><au>Bi, Luzheng</au><au>Wang, Zhi</au><au>Feleke, Aberham Genetu</au><au>Fei, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1344</spage><epage>1354</epage><pages>1344-1354</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38502615</pmid><doi>10.1109/TNSRE.2024.3379451</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8986-3379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1344-1354
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_pubmed_primary_38502615
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects brain functional connectivity
Brain modeling
Brain-Computer Interfaces
Cognition
Cognitive ability
cognitive distraction
Data models
Datasets
Decoding
EEG
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Embedding
hand movement decoding
Human-computer interface
Humans
Invariants
Manifolds
Motors
Movement
neural manifold
Neural networks
Prostheses
Prosthetics
Task analysis
Upper Extremity
title Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Decoding%20of%20Upper-Limb%20Movement%20Direction%20Under%20Cognitive%20Distraction%20With%20Invariant%20Patterns%20in%20Embedding%20Manifold&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Peng,%20Bolin&rft.date=2024&rft.volume=32&rft.spage=1344&rft.epage=1354&rft.pages=1344-1354&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3379451&rft_dat=%3Cproquest_pubme%3E2972701959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995314565&rft_id=info:pmid/38502615&rft_ieee_id=10475535&rft_doaj_id=oai_doaj_org_article_f800225595b547f88f3ed403bc9b6000&rfr_iscdi=true