Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold
Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1344-1354 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1354 |
---|---|
container_issue | |
container_start_page | 1344 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Peng, Bolin Bi, Luzheng Wang, Zhi Feleke, Aberham Genetu Fei, Weijie |
description | Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations. |
doi_str_mv | 10.1109/TNSRE.2024.3379451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38502615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10475535</ieee_id><doaj_id>oai_doaj_org_article_f800225595b547f88f3ed403bc9b6000</doaj_id><sourcerecordid>2972701959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</originalsourceid><addsrcrecordid>eNpdkUuP0zAUhSMEYh7wBxBCkdjMJsWvG8dLVApU6gAapmJpOc5NcdXYHTutBL8e98EIsbJ1z3fOtXWK4hUlE0qJenf_5fvdbMIIExPOpRJAnxSXFKCpCKPk6eHORSU4IxfFVUprQqisQT4vLngDhNUULovfd6HdpbH8gDZ0zq_K0JfL7RZjtXBDW96GPQ7os-4i2tEFXy59h7GchpV3o9tjVtIYzUn74caf5dzvTXQmm76ZccToU-l8ORta7I4bbo13fdh0L4pnvdkkfHk-r4vlx9n99HO1-PppPn2_qKyo2VjZWjXYQdsIXktLml4JqQBAssZ0qs2zugckBAyRHJXtG4E1V7UUzFrbcX5dzE-5XTBrvY1uMPGXDsbp4yDElTZxdHaDum8IYQxAQQtC9k3Tc-wE4a3NiwghOevmlLWN4WGHadSDSxY3G-Mx7JJmSjJJqAKV0bf_oeuwiz7_NFMKOBVQQ6bYibIxpBSxf3wgJfrQsj62rA8t63PL2fTmHL1rB-weLX9rzcDrE-AQ8Z9EIQE48D_V0KrN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995314565</pqid></control><display><type>article</type><title>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peng, Bolin ; Bi, Luzheng ; Wang, Zhi ; Feleke, Aberham Genetu ; Fei, Weijie</creator><creatorcontrib>Peng, Bolin ; Bi, Luzheng ; Wang, Zhi ; Feleke, Aberham Genetu ; Fei, Weijie</creatorcontrib><description>Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3379451</identifier><identifier>PMID: 38502615</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>brain functional connectivity ; Brain modeling ; Brain-Computer Interfaces ; Cognition ; Cognitive ability ; cognitive distraction ; Data models ; Datasets ; Decoding ; EEG ; Electroencephalography ; Electroencephalography (EEG) ; Electroencephalography - methods ; Embedding ; hand movement decoding ; Human-computer interface ; Humans ; Invariants ; Manifolds ; Motors ; Movement ; neural manifold ; Neural networks ; Prostheses ; Prosthetics ; Task analysis ; Upper Extremity</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1344-1354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</citedby><cites>FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</cites><orcidid>0000-0001-8986-3379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38502615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Bolin</creatorcontrib><creatorcontrib>Bi, Luzheng</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Feleke, Aberham Genetu</creatorcontrib><creatorcontrib>Fei, Weijie</creatorcontrib><title>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.</description><subject>brain functional connectivity</subject><subject>Brain modeling</subject><subject>Brain-Computer Interfaces</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>cognitive distraction</subject><subject>Data models</subject><subject>Datasets</subject><subject>Decoding</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography (EEG)</subject><subject>Electroencephalography - methods</subject><subject>Embedding</subject><subject>hand movement decoding</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Invariants</subject><subject>Manifolds</subject><subject>Motors</subject><subject>Movement</subject><subject>neural manifold</subject><subject>Neural networks</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Task analysis</subject><subject>Upper Extremity</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUuP0zAUhSMEYh7wBxBCkdjMJsWvG8dLVApU6gAapmJpOc5NcdXYHTutBL8e98EIsbJ1z3fOtXWK4hUlE0qJenf_5fvdbMIIExPOpRJAnxSXFKCpCKPk6eHORSU4IxfFVUprQqisQT4vLngDhNUULovfd6HdpbH8gDZ0zq_K0JfL7RZjtXBDW96GPQ7os-4i2tEFXy59h7GchpV3o9tjVtIYzUn74caf5dzvTXQmm76ZccToU-l8ORta7I4bbo13fdh0L4pnvdkkfHk-r4vlx9n99HO1-PppPn2_qKyo2VjZWjXYQdsIXktLml4JqQBAssZ0qs2zugckBAyRHJXtG4E1V7UUzFrbcX5dzE-5XTBrvY1uMPGXDsbp4yDElTZxdHaDum8IYQxAQQtC9k3Tc-wE4a3NiwghOevmlLWN4WGHadSDSxY3G-Mx7JJmSjJJqAKV0bf_oeuwiz7_NFMKOBVQQ6bYibIxpBSxf3wgJfrQsj62rA8t63PL2fTmHL1rB-weLX9rzcDrE-AQ8Z9EIQE48D_V0KrN</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Peng, Bolin</creator><creator>Bi, Luzheng</creator><creator>Wang, Zhi</creator><creator>Feleke, Aberham Genetu</creator><creator>Fei, Weijie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8986-3379</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</title><author>Peng, Bolin ; Bi, Luzheng ; Wang, Zhi ; Feleke, Aberham Genetu ; Fei, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-c698ed5b84367c08f9479555728ad9b67c6f5e005a073e9cf84e6396742cccd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brain functional connectivity</topic><topic>Brain modeling</topic><topic>Brain-Computer Interfaces</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>cognitive distraction</topic><topic>Data models</topic><topic>Datasets</topic><topic>Decoding</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography (EEG)</topic><topic>Electroencephalography - methods</topic><topic>Embedding</topic><topic>hand movement decoding</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Invariants</topic><topic>Manifolds</topic><topic>Motors</topic><topic>Movement</topic><topic>neural manifold</topic><topic>Neural networks</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Task analysis</topic><topic>Upper Extremity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Bolin</creatorcontrib><creatorcontrib>Bi, Luzheng</creatorcontrib><creatorcontrib>Wang, Zhi</creatorcontrib><creatorcontrib>Feleke, Aberham Genetu</creatorcontrib><creatorcontrib>Fei, Weijie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Bolin</au><au>Bi, Luzheng</au><au>Wang, Zhi</au><au>Feleke, Aberham Genetu</au><au>Fei, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1344</spage><epage>1354</epage><pages>1344-1354</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Motor brain-computer interfaces (BCIs) have gained growing research interest in motor rehabilitation, restoration, and prostheses control. Decoding upper-limb movement direction with noninvasive BCIs has been extensively investigated. However, few of them address the intervention of cognitive distraction that impairs decoding performance in practice. In this study, we propose a novel decoding model with invariant patterns in embedding manifold on a mixed dataset pooled from electroencephalograph (EEG) signals under different attentional states. We reconstruct an embedding low-dimensional manifold that intrinsically characterizes movements of the upper limb and transfer patterns of neural activities decomposed from brain functional connectivity (FC) to the manifold subspace to further preserve movement-related information. Experimental results showed that the proposed decoding model had higher robustness on the mixed dataset of attentive and distracted states compared to the baseline method. Our research provides insights into modeling a uniform underlying mechanism of movement-related EEG signals and can help enhance the practicability of BCI systems under real-world situations.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38502615</pmid><doi>10.1109/TNSRE.2024.3379451</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8986-3379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1344-1354 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_pubmed_primary_38502615 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | brain functional connectivity Brain modeling Brain-Computer Interfaces Cognition Cognitive ability cognitive distraction Data models Datasets Decoding EEG Electroencephalography Electroencephalography (EEG) Electroencephalography - methods Embedding hand movement decoding Human-computer interface Humans Invariants Manifolds Motors Movement neural manifold Neural networks Prostheses Prosthetics Task analysis Upper Extremity |
title | Robust Decoding of Upper-Limb Movement Direction Under Cognitive Distraction With Invariant Patterns in Embedding Manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Decoding%20of%20Upper-Limb%20Movement%20Direction%20Under%20Cognitive%20Distraction%20With%20Invariant%20Patterns%20in%20Embedding%20Manifold&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Peng,%20Bolin&rft.date=2024&rft.volume=32&rft.spage=1344&rft.epage=1354&rft.pages=1344-1354&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3379451&rft_dat=%3Cproquest_pubme%3E2972701959%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995314565&rft_id=info:pmid/38502615&rft_ieee_id=10475535&rft_doaj_id=oai_doaj_org_article_f800225595b547f88f3ed403bc9b6000&rfr_iscdi=true |