RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction
RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2024-01, Vol.33, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 33 |
creator | Liu, Lei Li, Chenglong Xiao, Yun Ruan, Rui Fan, Minghao |
description | RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets. |
doi_str_mv | 10.1109/TIP.2024.3371355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_38442061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460420</ieee_id><sourcerecordid>2938283543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMo1q-7B5EFL162TjbJbnLUqrVQUKSel2QzqavbbN1sBf-9Ka0inmYOz_syPEPIKYUhpaCuZpOnYQYZHzJWUCbEDjmgitMUgGe7cQdRpAXlakAOQ3gDoFzQfJ8MmOQ8g5wekOnz-GaWzDpdvdd-nnzWOhm96qZBP8fU6IA2uV4uUXfaV5jc1gF9r_28wUVcEu1tMvE9xnhft_6Y7DndBDzZziPycn83Gz2k08fxZHQ9TSvGZZ86oakzUirLsci5cVbkxjHrVAVGVQpBV0JrahRYdIUtLMrMODBcYy4kZ0fkctO77NqPFYa-XNShwqbRHttVKDPFZCaZ4CyiF__Qt3bV-XhdpLgEkTGeRwo2VNW1IXToymVXL3T3VVIo16bLaLpcmy63pmPkfFu8Mgu0v4EftRE42wA1Iv7p43l8DrBvfqmCBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2948052346</pqid></control><display><type>article</type><title>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lei ; Li, Chenglong ; Xiao, Yun ; Ruan, Rui ; Fan, Minghao</creator><creatorcontrib>Liu, Lei ; Li, Chenglong ; Xiao, Yun ; Ruan, Rui ; Fan, Minghao</creatorcontrib><description>RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3371355</identifier><identifier>PMID: 38442061</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Aggregation interaction ; Challenge-based appearance disentanglement ; Data models ; Feature extraction ; Guidance interaction ; Lighting ; Mathematical models ; Modules ; Parameters ; Representations ; RGBT tracking ; Target tracking ; Tracking ; Training ; Training data ; Training data generation</subject><ispartof>IEEE transactions on image processing, 2024-01, Vol.33, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</citedby><cites>FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</cites><orcidid>0000-0001-6822-9256 ; 0000-0002-7233-2739 ; 0000-0002-5285-8565 ; 0000-0003-2749-5528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10460420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38442061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Ruan, Rui</creatorcontrib><creatorcontrib>Fan, Minghao</creatorcontrib><title>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.</description><subject>Adaptation models</subject><subject>Aggregation interaction</subject><subject>Challenge-based appearance disentanglement</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Guidance interaction</subject><subject>Lighting</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Parameters</subject><subject>Representations</subject><subject>RGBT tracking</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Training</subject><subject>Training data</subject><subject>Training data generation</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhoMo1q-7B5EFL162TjbJbnLUqrVQUKSel2QzqavbbN1sBf-9Ka0inmYOz_syPEPIKYUhpaCuZpOnYQYZHzJWUCbEDjmgitMUgGe7cQdRpAXlakAOQ3gDoFzQfJ8MmOQ8g5wekOnz-GaWzDpdvdd-nnzWOhm96qZBP8fU6IA2uV4uUXfaV5jc1gF9r_28wUVcEu1tMvE9xnhft_6Y7DndBDzZziPycn83Gz2k08fxZHQ9TSvGZZ86oakzUirLsci5cVbkxjHrVAVGVQpBV0JrahRYdIUtLMrMODBcYy4kZ0fkctO77NqPFYa-XNShwqbRHttVKDPFZCaZ4CyiF__Qt3bV-XhdpLgEkTGeRwo2VNW1IXToymVXL3T3VVIo16bLaLpcmy63pmPkfFu8Mgu0v4EftRE42wA1Iv7p43l8DrBvfqmCBw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Lei</creator><creator>Li, Chenglong</creator><creator>Xiao, Yun</creator><creator>Ruan, Rui</creator><creator>Fan, Minghao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6822-9256</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0002-5285-8565</orcidid><orcidid>https://orcid.org/0000-0003-2749-5528</orcidid></search><sort><creationdate>20240101</creationdate><title>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</title><author>Liu, Lei ; Li, Chenglong ; Xiao, Yun ; Ruan, Rui ; Fan, Minghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Aggregation interaction</topic><topic>Challenge-based appearance disentanglement</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Guidance interaction</topic><topic>Lighting</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Parameters</topic><topic>Representations</topic><topic>RGBT tracking</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Training</topic><topic>Training data</topic><topic>Training data generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Ruan, Rui</creatorcontrib><creatorcontrib>Fan, Minghao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lei</au><au>Li, Chenglong</au><au>Xiao, Yun</au><au>Ruan, Rui</au><au>Fan, Minghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>33</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38442061</pmid><doi>10.1109/TIP.2024.3371355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6822-9256</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0002-5285-8565</orcidid><orcidid>https://orcid.org/0000-0003-2749-5528</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2024-01, Vol.33, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_38442061 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Aggregation interaction Challenge-based appearance disentanglement Data models Feature extraction Guidance interaction Lighting Mathematical models Modules Parameters Representations RGBT tracking Target tracking Tracking Training Training data Training data generation |
title | RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGBT%20Tracking%20via%20Challenge-based%20Appearance%20Disentanglement%20and%20Interaction&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Lei&rft.date=2024-01-01&rft.volume=33&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3371355&rft_dat=%3Cproquest_RIE%3E2938283543%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2948052346&rft_id=info:pmid/38442061&rft_ieee_id=10460420&rfr_iscdi=true |