RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction

RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024-01, Vol.33, p.1-1
Hauptverfasser: Liu, Lei, Li, Chenglong, Xiao, Yun, Ruan, Rui, Fan, Minghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 33
creator Liu, Lei
Li, Chenglong
Xiao, Yun
Ruan, Rui
Fan, Minghao
description RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.
doi_str_mv 10.1109/TIP.2024.3371355
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_38442061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460420</ieee_id><sourcerecordid>2938283543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMo1q-7B5EFL162TjbJbnLUqrVQUKSel2QzqavbbN1sBf-9Ka0inmYOz_syPEPIKYUhpaCuZpOnYQYZHzJWUCbEDjmgitMUgGe7cQdRpAXlakAOQ3gDoFzQfJ8MmOQ8g5wekOnz-GaWzDpdvdd-nnzWOhm96qZBP8fU6IA2uV4uUXfaV5jc1gF9r_28wUVcEu1tMvE9xnhft_6Y7DndBDzZziPycn83Gz2k08fxZHQ9TSvGZZ86oakzUirLsci5cVbkxjHrVAVGVQpBV0JrahRYdIUtLMrMODBcYy4kZ0fkctO77NqPFYa-XNShwqbRHttVKDPFZCaZ4CyiF__Qt3bV-XhdpLgEkTGeRwo2VNW1IXToymVXL3T3VVIo16bLaLpcmy63pmPkfFu8Mgu0v4EftRE42wA1Iv7p43l8DrBvfqmCBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2948052346</pqid></control><display><type>article</type><title>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lei ; Li, Chenglong ; Xiao, Yun ; Ruan, Rui ; Fan, Minghao</creator><creatorcontrib>Liu, Lei ; Li, Chenglong ; Xiao, Yun ; Ruan, Rui ; Fan, Minghao</creatorcontrib><description>RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3371355</identifier><identifier>PMID: 38442061</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Aggregation interaction ; Challenge-based appearance disentanglement ; Data models ; Feature extraction ; Guidance interaction ; Lighting ; Mathematical models ; Modules ; Parameters ; Representations ; RGBT tracking ; Target tracking ; Tracking ; Training ; Training data ; Training data generation</subject><ispartof>IEEE transactions on image processing, 2024-01, Vol.33, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</citedby><cites>FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</cites><orcidid>0000-0001-6822-9256 ; 0000-0002-7233-2739 ; 0000-0002-5285-8565 ; 0000-0003-2749-5528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10460420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38442061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Ruan, Rui</creatorcontrib><creatorcontrib>Fan, Minghao</creatorcontrib><title>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.</description><subject>Adaptation models</subject><subject>Aggregation interaction</subject><subject>Challenge-based appearance disentanglement</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Guidance interaction</subject><subject>Lighting</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Parameters</subject><subject>Representations</subject><subject>RGBT tracking</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Training</subject><subject>Training data</subject><subject>Training data generation</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhoMo1q-7B5EFL162TjbJbnLUqrVQUKSel2QzqavbbN1sBf-9Ka0inmYOz_syPEPIKYUhpaCuZpOnYQYZHzJWUCbEDjmgitMUgGe7cQdRpAXlakAOQ3gDoFzQfJ8MmOQ8g5wekOnz-GaWzDpdvdd-nnzWOhm96qZBP8fU6IA2uV4uUXfaV5jc1gF9r_28wUVcEu1tMvE9xnhft_6Y7DndBDzZziPycn83Gz2k08fxZHQ9TSvGZZ86oakzUirLsci5cVbkxjHrVAVGVQpBV0JrahRYdIUtLMrMODBcYy4kZ0fkctO77NqPFYa-XNShwqbRHttVKDPFZCaZ4CyiF__Qt3bV-XhdpLgEkTGeRwo2VNW1IXToymVXL3T3VVIo16bLaLpcmy63pmPkfFu8Mgu0v4EftRE42wA1Iv7p43l8DrBvfqmCBw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Lei</creator><creator>Li, Chenglong</creator><creator>Xiao, Yun</creator><creator>Ruan, Rui</creator><creator>Fan, Minghao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6822-9256</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0002-5285-8565</orcidid><orcidid>https://orcid.org/0000-0003-2749-5528</orcidid></search><sort><creationdate>20240101</creationdate><title>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</title><author>Liu, Lei ; Li, Chenglong ; Xiao, Yun ; Ruan, Rui ; Fan, Minghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f5a1fb889d4e764bfd56bf3df9c0b9c9e0ac5aa1b90def7d7de82bf0b4ae65843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Aggregation interaction</topic><topic>Challenge-based appearance disentanglement</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Guidance interaction</topic><topic>Lighting</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Parameters</topic><topic>Representations</topic><topic>RGBT tracking</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Training</topic><topic>Training data</topic><topic>Training data generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Li, Chenglong</creatorcontrib><creatorcontrib>Xiao, Yun</creatorcontrib><creatorcontrib>Ruan, Rui</creatorcontrib><creatorcontrib>Fan, Minghao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lei</au><au>Li, Chenglong</au><au>Xiao, Yun</au><au>Ruan, Rui</au><au>Fan, Minghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>33</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role in representing the target appearance in RGBT tracking. In this paper, we propose a novel approach, which performs target appearance representation disentanglement and interaction via both modality-shared and modality-specific challenge attributes, for robust RGBT tracking. In particular, we disentangle the target appearance representations via five challenge-based branches with different structures according to their properties, including three parameter-shared branches to model modality-shared challenges and two parameter-independent branches to model modality-specific challenges. Considering the complementary advantages between modality-specific cues, we propose a guidance interaction module to transfer discriminative features from one modality to another one to enhance the discriminative ability of weak modality. Moreover, we design an aggregation interaction module to combine all challenge-based target representations, which could form more discriminative target representations and fit the challenge-agnostic tracking process. These challenge-based branches are able to model the target appearance under certain challenges so that the target representations can be learned by a few parameters even in the situation of insufficient training data. In addition, to relieve labor costs and avoid label ambiguity, we design a generation strategy to generate training data with different challenge attributes. Comprehensive experiments demonstrate the superiority of the proposed tracker against the state-of-the-art methods on four benchmark datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38442061</pmid><doi>10.1109/TIP.2024.3371355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6822-9256</orcidid><orcidid>https://orcid.org/0000-0002-7233-2739</orcidid><orcidid>https://orcid.org/0000-0002-5285-8565</orcidid><orcidid>https://orcid.org/0000-0003-2749-5528</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2024-01, Vol.33, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_38442061
source IEEE Electronic Library (IEL)
subjects Adaptation models
Aggregation interaction
Challenge-based appearance disentanglement
Data models
Feature extraction
Guidance interaction
Lighting
Mathematical models
Modules
Parameters
Representations
RGBT tracking
Target tracking
Tracking
Training
Training data
Training data generation
title RGBT Tracking via Challenge-based Appearance Disentanglement and Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RGBT%20Tracking%20via%20Challenge-based%20Appearance%20Disentanglement%20and%20Interaction&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Lei&rft.date=2024-01-01&rft.volume=33&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3371355&rft_dat=%3Cproquest_RIE%3E2938283543%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2948052346&rft_id=info:pmid/38442061&rft_ieee_id=10460420&rfr_iscdi=true