An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm

Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1109-1118
Hauptverfasser: Yang, Qinlian, Li, Yingqi, Li, You, Zheng, Manxu, Song, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue
container_start_page 1109
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Yang, Qinlian
Li, Yingqi
Li, You
Zheng, Manxu
Song, Rong
description Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.
doi_str_mv 10.1109/TNSRE.2024.3371465
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38421838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10453589</ieee_id><doaj_id>oai_doaj_org_article_b7939f9c42614228ab3bb49f9a2b99d1</doaj_id><sourcerecordid>2934274544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6aff158636ed208d34dbd87d61abe4865f25a234b879e1414a8d1389de9f5f693</originalsourceid><addsrcrecordid>eNpdkUuP0zAUhSMEYobCH0AIWWLDJiV-xl52Ri1TqTw0LWwtJ74prtK4YztI_AD-N-6DEWLlq6PvHh_7FMVrXE0xrtSHzef1_XxKKsKmlNaYCf6kuMacy7IiuHp6nCkrGSXVVfEixl1V4Vrw-nlxRSUjWFJ5XfyeDWhmzSG5n4DuzH4PISZwA_rkLfSo8wEt5utyOdixBYs2PjyMgL4GsK5Nzg_oxsSs5-G7Cc40PaCFD1tIyQ1btDBtyg730I4hHm9YgYkJrR9GEyCiWb_1waUf-5fFs870EV5dzknxbTHf3N6Vqy8fl7ezVdlSoVIpTNdhLgUVYEklLWW2sbK2ApsGmBS8I9wQyhpZK8AMMyMtplJZUB3vhKKTYnn2td7s9CG4vQm_tDdOn4QcXJuQXNuDbmpFVadaRgRmhEjT0KZhWTGkUSrbTor3Z69D8PlPYtJ7F1voezOAH6MmijJSM85YRt_9h-78GIb80kxxQSWtT-HImWqDjzFA9xgQV_pYuD4Vro-F60vheentxXps9mAfV_42nIE3Z8ABwD-OjFMuFf0DF2SvDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956383769</pqid></control><display><type>article</type><title>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Qinlian ; Li, Yingqi ; Li, You ; Zheng, Manxu ; Song, Rong</creator><creatorcontrib>Yang, Qinlian ; Li, Yingqi ; Li, You ; Zheng, Manxu ; Song, Rong</creatorcontrib><description>Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3371465</identifier><identifier>PMID: 38421838</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adaptation models ; Algorithms ; Ankle ; Biological neural networks ; Biomechanics ; Control systems ; Control systems design ; Electric Stimulation - methods ; Electric Stimulation Therapy - methods ; Electrical stimulation ; Electrical stimuli ; Functional electrical stimulation ; Goodness of fit ; Hammerstein model ; Humans ; Iron ; Least squares ; Least-Squares Analysis ; Mathematical models ; Muscle contraction ; muscle model ; Muscle, Skeletal - physiology ; Muscles ; Muscular fatigue ; Nonlinear response ; Parameters ; Predictive models ; Stability analysis ; Stimulation ; system identification ; Torque</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1109-1118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-6aff158636ed208d34dbd87d61abe4865f25a234b879e1414a8d1389de9f5f693</cites><orcidid>0000-0003-2906-2857 ; 0000-0003-3662-116X ; 0009-0002-8548-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38421838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qinlian</creatorcontrib><creatorcontrib>Li, Yingqi</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><creatorcontrib>Zheng, Manxu</creatorcontrib><creatorcontrib>Song, Rong</creatorcontrib><title>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Ankle</subject><subject>Biological neural networks</subject><subject>Biomechanics</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Electric Stimulation - methods</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Functional electrical stimulation</subject><subject>Goodness of fit</subject><subject>Hammerstein model</subject><subject>Humans</subject><subject>Iron</subject><subject>Least squares</subject><subject>Least-Squares Analysis</subject><subject>Mathematical models</subject><subject>Muscle contraction</subject><subject>muscle model</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular fatigue</subject><subject>Nonlinear response</subject><subject>Parameters</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>Stimulation</subject><subject>system identification</subject><subject>Torque</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUuP0zAUhSMEYobCH0AIWWLDJiV-xl52Ri1TqTw0LWwtJ74prtK4YztI_AD-N-6DEWLlq6PvHh_7FMVrXE0xrtSHzef1_XxKKsKmlNaYCf6kuMacy7IiuHp6nCkrGSXVVfEixl1V4Vrw-nlxRSUjWFJ5XfyeDWhmzSG5n4DuzH4PISZwA_rkLfSo8wEt5utyOdixBYs2PjyMgL4GsK5Nzg_oxsSs5-G7Cc40PaCFD1tIyQ1btDBtyg730I4hHm9YgYkJrR9GEyCiWb_1waUf-5fFs870EV5dzknxbTHf3N6Vqy8fl7ezVdlSoVIpTNdhLgUVYEklLWW2sbK2ApsGmBS8I9wQyhpZK8AMMyMtplJZUB3vhKKTYnn2td7s9CG4vQm_tDdOn4QcXJuQXNuDbmpFVadaRgRmhEjT0KZhWTGkUSrbTor3Z69D8PlPYtJ7F1voezOAH6MmijJSM85YRt_9h-78GIb80kxxQSWtT-HImWqDjzFA9xgQV_pYuD4Vro-F60vheentxXps9mAfV_42nIE3Z8ABwD-OjFMuFf0DF2SvDA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Qinlian</creator><creator>Li, Yingqi</creator><creator>Li, You</creator><creator>Zheng, Manxu</creator><creator>Song, Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2906-2857</orcidid><orcidid>https://orcid.org/0000-0003-3662-116X</orcidid><orcidid>https://orcid.org/0009-0002-8548-5029</orcidid></search><sort><creationdate>2024</creationdate><title>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</title><author>Yang, Qinlian ; Li, Yingqi ; Li, You ; Zheng, Manxu ; Song, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6aff158636ed208d34dbd87d61abe4865f25a234b879e1414a8d1389de9f5f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Ankle</topic><topic>Biological neural networks</topic><topic>Biomechanics</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Electric Stimulation - methods</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Functional electrical stimulation</topic><topic>Goodness of fit</topic><topic>Hammerstein model</topic><topic>Humans</topic><topic>Iron</topic><topic>Least squares</topic><topic>Least-Squares Analysis</topic><topic>Mathematical models</topic><topic>Muscle contraction</topic><topic>muscle model</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular fatigue</topic><topic>Nonlinear response</topic><topic>Parameters</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>Stimulation</topic><topic>system identification</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qinlian</creatorcontrib><creatorcontrib>Li, Yingqi</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><creatorcontrib>Zheng, Manxu</creatorcontrib><creatorcontrib>Song, Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qinlian</au><au>Li, Yingqi</au><au>Li, You</au><au>Zheng, Manxu</au><au>Song, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1109</spage><epage>1118</epage><pages>1109-1118</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38421838</pmid><doi>10.1109/TNSRE.2024.3371465</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2906-2857</orcidid><orcidid>https://orcid.org/0000-0003-3662-116X</orcidid><orcidid>https://orcid.org/0009-0002-8548-5029</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1109-1118
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_pubmed_primary_38421838
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Adaptation models
Algorithms
Ankle
Biological neural networks
Biomechanics
Control systems
Control systems design
Electric Stimulation - methods
Electric Stimulation Therapy - methods
Electrical stimulation
Electrical stimuli
Functional electrical stimulation
Goodness of fit
Hammerstein model
Humans
Iron
Least squares
Least-Squares Analysis
Mathematical models
Muscle contraction
muscle model
Muscle, Skeletal - physiology
Muscles
Muscular fatigue
Nonlinear response
Parameters
Predictive models
Stability analysis
Stimulation
system identification
Torque
title An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Hammerstein%20Model%20for%20FES-Induced%20Torque%20Prediction%20Based%20on%20Variable%20Forgetting%20Factor%20Recursive%20Least%20Squares%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Yang,%20Qinlian&rft.date=2024&rft.volume=32&rft.spage=1109&rft.epage=1118&rft.pages=1109-1118&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3371465&rft_dat=%3Cproquest_pubme%3E2934274544%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956383769&rft_id=info:pmid/38421838&rft_ieee_id=10453589&rft_doaj_id=oai_doaj_org_article_b7939f9c42614228ab3bb49f9a2b99d1&rfr_iscdi=true