An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm
Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varyin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.1109-1118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1118 |
---|---|
container_issue | |
container_start_page | 1109 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Yang, Qinlian Li, Yingqi Li, You Zheng, Manxu Song, Rong |
description | Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes. |
doi_str_mv | 10.1109/TNSRE.2024.3371465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38421838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10453589</ieee_id><doaj_id>oai_doaj_org_article_b7939f9c42614228ab3bb49f9a2b99d1</doaj_id><sourcerecordid>2934274544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6aff158636ed208d34dbd87d61abe4865f25a234b879e1414a8d1389de9f5f693</originalsourceid><addsrcrecordid>eNpdkUuP0zAUhSMEYobCH0AIWWLDJiV-xl52Ri1TqTw0LWwtJ74prtK4YztI_AD-N-6DEWLlq6PvHh_7FMVrXE0xrtSHzef1_XxKKsKmlNaYCf6kuMacy7IiuHp6nCkrGSXVVfEixl1V4Vrw-nlxRSUjWFJ5XfyeDWhmzSG5n4DuzH4PISZwA_rkLfSo8wEt5utyOdixBYs2PjyMgL4GsK5Nzg_oxsSs5-G7Cc40PaCFD1tIyQ1btDBtyg730I4hHm9YgYkJrR9GEyCiWb_1waUf-5fFs870EV5dzknxbTHf3N6Vqy8fl7ezVdlSoVIpTNdhLgUVYEklLWW2sbK2ApsGmBS8I9wQyhpZK8AMMyMtplJZUB3vhKKTYnn2td7s9CG4vQm_tDdOn4QcXJuQXNuDbmpFVadaRgRmhEjT0KZhWTGkUSrbTor3Z69D8PlPYtJ7F1voezOAH6MmijJSM85YRt_9h-78GIb80kxxQSWtT-HImWqDjzFA9xgQV_pYuD4Vro-F60vheentxXps9mAfV_42nIE3Z8ABwD-OjFMuFf0DF2SvDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956383769</pqid></control><display><type>article</type><title>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Qinlian ; Li, Yingqi ; Li, You ; Zheng, Manxu ; Song, Rong</creator><creatorcontrib>Yang, Qinlian ; Li, Yingqi ; Li, You ; Zheng, Manxu ; Song, Rong</creatorcontrib><description>Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3371465</identifier><identifier>PMID: 38421838</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adaptation models ; Algorithms ; Ankle ; Biological neural networks ; Biomechanics ; Control systems ; Control systems design ; Electric Stimulation - methods ; Electric Stimulation Therapy - methods ; Electrical stimulation ; Electrical stimuli ; Functional electrical stimulation ; Goodness of fit ; Hammerstein model ; Humans ; Iron ; Least squares ; Least-Squares Analysis ; Mathematical models ; Muscle contraction ; muscle model ; Muscle, Skeletal - physiology ; Muscles ; Muscular fatigue ; Nonlinear response ; Parameters ; Predictive models ; Stability analysis ; Stimulation ; system identification ; Torque</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1109-1118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-6aff158636ed208d34dbd87d61abe4865f25a234b879e1414a8d1389de9f5f693</cites><orcidid>0000-0003-2906-2857 ; 0000-0003-3662-116X ; 0009-0002-8548-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38421838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Qinlian</creatorcontrib><creatorcontrib>Li, Yingqi</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><creatorcontrib>Zheng, Manxu</creatorcontrib><creatorcontrib>Song, Rong</creatorcontrib><title>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Ankle</subject><subject>Biological neural networks</subject><subject>Biomechanics</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Electric Stimulation - methods</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Functional electrical stimulation</subject><subject>Goodness of fit</subject><subject>Hammerstein model</subject><subject>Humans</subject><subject>Iron</subject><subject>Least squares</subject><subject>Least-Squares Analysis</subject><subject>Mathematical models</subject><subject>Muscle contraction</subject><subject>muscle model</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Muscular fatigue</subject><subject>Nonlinear response</subject><subject>Parameters</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>Stimulation</subject><subject>system identification</subject><subject>Torque</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUuP0zAUhSMEYobCH0AIWWLDJiV-xl52Ri1TqTw0LWwtJ74prtK4YztI_AD-N-6DEWLlq6PvHh_7FMVrXE0xrtSHzef1_XxKKsKmlNaYCf6kuMacy7IiuHp6nCkrGSXVVfEixl1V4Vrw-nlxRSUjWFJ5XfyeDWhmzSG5n4DuzH4PISZwA_rkLfSo8wEt5utyOdixBYs2PjyMgL4GsK5Nzg_oxsSs5-G7Cc40PaCFD1tIyQ1btDBtyg730I4hHm9YgYkJrR9GEyCiWb_1waUf-5fFs870EV5dzknxbTHf3N6Vqy8fl7ezVdlSoVIpTNdhLgUVYEklLWW2sbK2ApsGmBS8I9wQyhpZK8AMMyMtplJZUB3vhKKTYnn2td7s9CG4vQm_tDdOn4QcXJuQXNuDbmpFVadaRgRmhEjT0KZhWTGkUSrbTor3Z69D8PlPYtJ7F1voezOAH6MmijJSM85YRt_9h-78GIb80kxxQSWtT-HImWqDjzFA9xgQV_pYuD4Vro-F60vheentxXps9mAfV_42nIE3Z8ABwD-OjFMuFf0DF2SvDA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Qinlian</creator><creator>Li, Yingqi</creator><creator>Li, You</creator><creator>Zheng, Manxu</creator><creator>Song, Rong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2906-2857</orcidid><orcidid>https://orcid.org/0000-0003-3662-116X</orcidid><orcidid>https://orcid.org/0009-0002-8548-5029</orcidid></search><sort><creationdate>2024</creationdate><title>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</title><author>Yang, Qinlian ; Li, Yingqi ; Li, You ; Zheng, Manxu ; Song, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6aff158636ed208d34dbd87d61abe4865f25a234b879e1414a8d1389de9f5f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Ankle</topic><topic>Biological neural networks</topic><topic>Biomechanics</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Electric Stimulation - methods</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Functional electrical stimulation</topic><topic>Goodness of fit</topic><topic>Hammerstein model</topic><topic>Humans</topic><topic>Iron</topic><topic>Least squares</topic><topic>Least-Squares Analysis</topic><topic>Mathematical models</topic><topic>Muscle contraction</topic><topic>muscle model</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Muscular fatigue</topic><topic>Nonlinear response</topic><topic>Parameters</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>Stimulation</topic><topic>system identification</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Qinlian</creatorcontrib><creatorcontrib>Li, Yingqi</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><creatorcontrib>Zheng, Manxu</creatorcontrib><creatorcontrib>Song, Rong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Qinlian</au><au>Li, Yingqi</au><au>Li, You</au><au>Zheng, Manxu</au><au>Song, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>1109</spage><epage>1118</epage><pages>1109-1118</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Modeling the muscle response to functional electrical stimulation (FES) is an important step during model-based FES control system design. The Hammerstein structure is widely used in simulating this nonlinear biomechanical response. However, a fixed relationship cannot cope well with the time-varying property of muscles and muscle fatigue. In this paper, we proposed an adaptive Hammerstein model to predict ankle joint torque induced by electrical stimulation, which used variable forgetting factor recursive least squares (VFFRLS) method to update the model parameters. To validate the proposed model, ten healthy individuals were recruited for short-duration FES experiments, ten for long-duration FES experiments, and three stroke patients for both. The isometric ankle dorsiflexion torque induced by FES was measured, and then the test performance of the fixed-parameter Hammerstein model, the adaptive Hammerstein model based on fixed forgetting factor recursive least squares (FFFRLS) and the adaptive Hammerstein model based on VFFRLS was compared. The goodness of fit, root mean square error, peak error and success rate were applied to evaluate the accuracy and stability of the model. The results indicate a significant improvement in both the accuracy and stability of the proposed adaptive model compared to the fixed-parameter model and the adaptive model based on FFFRLS. The proposed adaptive model enhances the ability of the model to cope with muscle changes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38421838</pmid><doi>10.1109/TNSRE.2024.3371465</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2906-2857</orcidid><orcidid>https://orcid.org/0000-0003-3662-116X</orcidid><orcidid>https://orcid.org/0009-0002-8548-5029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.1109-1118 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_pubmed_primary_38421838 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Adaptation models Algorithms Ankle Biological neural networks Biomechanics Control systems Control systems design Electric Stimulation - methods Electric Stimulation Therapy - methods Electrical stimulation Electrical stimuli Functional electrical stimulation Goodness of fit Hammerstein model Humans Iron Least squares Least-Squares Analysis Mathematical models Muscle contraction muscle model Muscle, Skeletal - physiology Muscles Muscular fatigue Nonlinear response Parameters Predictive models Stability analysis Stimulation system identification Torque |
title | An Adaptive Hammerstein Model for FES-Induced Torque Prediction Based on Variable Forgetting Factor Recursive Least Squares Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Hammerstein%20Model%20for%20FES-Induced%20Torque%20Prediction%20Based%20on%20Variable%20Forgetting%20Factor%20Recursive%20Least%20Squares%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Yang,%20Qinlian&rft.date=2024&rft.volume=32&rft.spage=1109&rft.epage=1118&rft.pages=1109-1118&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3371465&rft_dat=%3Cproquest_pubme%3E2934274544%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956383769&rft_id=info:pmid/38421838&rft_ieee_id=10453589&rft_doaj_id=oai_doaj_org_article_b7939f9c42614228ab3bb49f9a2b99d1&rfr_iscdi=true |