Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast
Video-based remote physiological measurement utilizes facial videos to measure the blood volume change signal, which is also called remote photoplethysmography (rPPG). Supervised methods for rPPG measurements have been shown to achieve good performance. However, the drawback of these methods is that...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2024-08, Vol.46 (8), p.5835-5851 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5851 |
---|---|
container_issue | 8 |
container_start_page | 5835 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 46 |
creator | Sun, Zhaodong Li, Xiaobai |
description | Video-based remote physiological measurement utilizes facial videos to measure the blood volume change signal, which is also called remote photoplethysmography (rPPG). Supervised methods for rPPG measurements have been shown to achieve good performance. However, the drawback of these methods is that they require facial videos with ground truth (GT) physiological signals, which are often costly and difficult to obtain. In this paper, we propose Contrast-Phys+, a method that can be trained in both unsupervised and weakly-supervised settings. We employ a 3DCNN model to generate multiple spatiotemporal rPPG signals and incorporate prior knowledge of rPPG into a contrastive loss function. We further incorporate the GT signals into contrastive learning to adapt to partial or misaligned labels. The contrastive loss encourages rPPG/GT signals from the same video to be grouped together, while pushing those from different videos apart. We evaluate our methods on five publicly available datasets that include both RGB and Near-infrared videos. Contrast-Phys+ outperforms the state-of-the-art supervised methods, even when using partially available or misaligned GT signals, or no labels at all. Additionally, we highlight the advantages of our methods in terms of computational efficiency, noise robustness, and generalization. |
doi_str_mv | 10.1109/TPAMI.2024.3367910 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38376970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10440521</ieee_id><sourcerecordid>3075418791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3110-ed4f8198af30e7a8f0408d0c283e9cabbc6fcd6f61fc5389dea879400bb138e93</originalsourceid><addsrcrecordid>eNpdkV9r1TAYh4Mo7mz6BUSk4I0wenzzp22yu3mYOthwuE0vQ5q-1cy2qUk7OPjll-M5m8OrhOT5_d6Eh5BXFJaUgnp_dXF8frpkwMSS87JSFJ6QBVVc5bzg6ilZAC1ZLiWTe2Q_xhsAKgrgz8kel7wqVQUL8mflhymYOOUXP9fx8Ci7HuI8Yrh1EZvMDE32Hc2vbp1f_jv95hr0-Qez2X_F3k-YbcLOd_6Hs6bLztHEOWCPw5TdOpNdjmZyCetHH9L1_cgX5Flruogvd-sBuf54crX6nJ99-XS6Oj7LLU__zLERraRKmpYDVka2IEA2YJnkqKypa1u2tinbkra24FI1aGSlBEBdUy5R8QPybts7Bv97xjjp3kWLXWcG9HPUTDFVCFAgE_r2P_TGz2FIr9McqkLQ1EwTxbaUDT7GgK0eg-tNWGsKeqNG_1WjN2r0Tk0KvdlVz3WPzUPk3kUCXm8Bh4iPGoWAglF-B2Q5lNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075418791</pqid></control><display><type>article</type><title>Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Zhaodong ; Li, Xiaobai</creator><creatorcontrib>Sun, Zhaodong ; Li, Xiaobai</creatorcontrib><description>Video-based remote physiological measurement utilizes facial videos to measure the blood volume change signal, which is also called remote photoplethysmography (rPPG). Supervised methods for rPPG measurements have been shown to achieve good performance. However, the drawback of these methods is that they require facial videos with ground truth (GT) physiological signals, which are often costly and difficult to obtain. In this paper, we propose Contrast-Phys+, a method that can be trained in both unsupervised and weakly-supervised settings. We employ a 3DCNN model to generate multiple spatiotemporal rPPG signals and incorporate prior knowledge of rPPG into a contrastive loss function. We further incorporate the GT signals into contrastive learning to adapt to partial or misaligned labels. The contrastive loss encourages rPPG/GT signals from the same video to be grouped together, while pushing those from different videos apart. We evaluate our methods on five publicly available datasets that include both RGB and Near-infrared videos. Contrast-Phys+ outperforms the state-of-the-art supervised methods, even when using partially available or misaligned GT signals, or no labels at all. Additionally, we highlight the advantages of our methods in terms of computational efficiency, noise robustness, and generalization.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3367910</identifier><identifier>PMID: 38376970</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical measurement ; Blood volume ; contrastive learning ; face video ; Faces ; Infrared imaging ; Labels ; Photoplethysmography ; Physiology ; Remote photoplethysmography ; Self-supervised learning ; semi-supervised learning ; Training ; unsupervised learning ; Video ; Videos ; weakly-supervised learning</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-08, Vol.46 (8), p.5835-5851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3110-ed4f8198af30e7a8f0408d0c283e9cabbc6fcd6f61fc5389dea879400bb138e93</citedby><cites>FETCH-LOGICAL-c3110-ed4f8198af30e7a8f0408d0c283e9cabbc6fcd6f61fc5389dea879400bb138e93</cites><orcidid>0000-0002-0597-0765 ; 0000-0003-4519-7823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10440521$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38376970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Zhaodong</creatorcontrib><creatorcontrib>Li, Xiaobai</creatorcontrib><title>Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Video-based remote physiological measurement utilizes facial videos to measure the blood volume change signal, which is also called remote photoplethysmography (rPPG). Supervised methods for rPPG measurements have been shown to achieve good performance. However, the drawback of these methods is that they require facial videos with ground truth (GT) physiological signals, which are often costly and difficult to obtain. In this paper, we propose Contrast-Phys+, a method that can be trained in both unsupervised and weakly-supervised settings. We employ a 3DCNN model to generate multiple spatiotemporal rPPG signals and incorporate prior knowledge of rPPG into a contrastive loss function. We further incorporate the GT signals into contrastive learning to adapt to partial or misaligned labels. The contrastive loss encourages rPPG/GT signals from the same video to be grouped together, while pushing those from different videos apart. We evaluate our methods on five publicly available datasets that include both RGB and Near-infrared videos. Contrast-Phys+ outperforms the state-of-the-art supervised methods, even when using partially available or misaligned GT signals, or no labels at all. Additionally, we highlight the advantages of our methods in terms of computational efficiency, noise robustness, and generalization.</description><subject>Biomedical measurement</subject><subject>Blood volume</subject><subject>contrastive learning</subject><subject>face video</subject><subject>Faces</subject><subject>Infrared imaging</subject><subject>Labels</subject><subject>Photoplethysmography</subject><subject>Physiology</subject><subject>Remote photoplethysmography</subject><subject>Self-supervised learning</subject><subject>semi-supervised learning</subject><subject>Training</subject><subject>unsupervised learning</subject><subject>Video</subject><subject>Videos</subject><subject>weakly-supervised learning</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkV9r1TAYh4Mo7mz6BUSk4I0wenzzp22yu3mYOthwuE0vQ5q-1cy2qUk7OPjll-M5m8OrhOT5_d6Eh5BXFJaUgnp_dXF8frpkwMSS87JSFJ6QBVVc5bzg6ilZAC1ZLiWTe2Q_xhsAKgrgz8kel7wqVQUL8mflhymYOOUXP9fx8Ci7HuI8Yrh1EZvMDE32Hc2vbp1f_jv95hr0-Qez2X_F3k-YbcLOd_6Hs6bLztHEOWCPw5TdOpNdjmZyCetHH9L1_cgX5Flruogvd-sBuf54crX6nJ99-XS6Oj7LLU__zLERraRKmpYDVka2IEA2YJnkqKypa1u2tinbkra24FI1aGSlBEBdUy5R8QPybts7Bv97xjjp3kWLXWcG9HPUTDFVCFAgE_r2P_TGz2FIr9McqkLQ1EwTxbaUDT7GgK0eg-tNWGsKeqNG_1WjN2r0Tk0KvdlVz3WPzUPk3kUCXm8Bh4iPGoWAglF-B2Q5lNA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sun, Zhaodong</creator><creator>Li, Xiaobai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0597-0765</orcidid><orcidid>https://orcid.org/0000-0003-4519-7823</orcidid></search><sort><creationdate>20240801</creationdate><title>Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast</title><author>Sun, Zhaodong ; Li, Xiaobai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3110-ed4f8198af30e7a8f0408d0c283e9cabbc6fcd6f61fc5389dea879400bb138e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical measurement</topic><topic>Blood volume</topic><topic>contrastive learning</topic><topic>face video</topic><topic>Faces</topic><topic>Infrared imaging</topic><topic>Labels</topic><topic>Photoplethysmography</topic><topic>Physiology</topic><topic>Remote photoplethysmography</topic><topic>Self-supervised learning</topic><topic>semi-supervised learning</topic><topic>Training</topic><topic>unsupervised learning</topic><topic>Video</topic><topic>Videos</topic><topic>weakly-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zhaodong</creatorcontrib><creatorcontrib>Li, Xiaobai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zhaodong</au><au>Li, Xiaobai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>46</volume><issue>8</issue><spage>5835</spage><epage>5851</epage><pages>5835-5851</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Video-based remote physiological measurement utilizes facial videos to measure the blood volume change signal, which is also called remote photoplethysmography (rPPG). Supervised methods for rPPG measurements have been shown to achieve good performance. However, the drawback of these methods is that they require facial videos with ground truth (GT) physiological signals, which are often costly and difficult to obtain. In this paper, we propose Contrast-Phys+, a method that can be trained in both unsupervised and weakly-supervised settings. We employ a 3DCNN model to generate multiple spatiotemporal rPPG signals and incorporate prior knowledge of rPPG into a contrastive loss function. We further incorporate the GT signals into contrastive learning to adapt to partial or misaligned labels. The contrastive loss encourages rPPG/GT signals from the same video to be grouped together, while pushing those from different videos apart. We evaluate our methods on five publicly available datasets that include both RGB and Near-infrared videos. Contrast-Phys+ outperforms the state-of-the-art supervised methods, even when using partially available or misaligned GT signals, or no labels at all. Additionally, we highlight the advantages of our methods in terms of computational efficiency, noise robustness, and generalization.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38376970</pmid><doi>10.1109/TPAMI.2024.3367910</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0597-0765</orcidid><orcidid>https://orcid.org/0000-0003-4519-7823</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2024-08, Vol.46 (8), p.5835-5851 |
issn | 0162-8828 1939-3539 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_38376970 |
source | IEEE Electronic Library (IEL) |
subjects | Biomedical measurement Blood volume contrastive learning face video Faces Infrared imaging Labels Photoplethysmography Physiology Remote photoplethysmography Self-supervised learning semi-supervised learning Training unsupervised learning Video Videos weakly-supervised learning |
title | Contrast-Phys+: Unsupervised and Weakly-Supervised Video-Based Remote Physiological Measurement via Spatiotemporal Contrast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrast-Phys+:%20Unsupervised%20and%20Weakly-Supervised%20Video-Based%20Remote%20Physiological%20Measurement%20via%20Spatiotemporal%20Contrast&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Sun,%20Zhaodong&rft.date=2024-08-01&rft.volume=46&rft.issue=8&rft.spage=5835&rft.epage=5851&rft.pages=5835-5851&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3367910&rft_dat=%3Cproquest_pubme%3E3075418791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075418791&rft_id=info:pmid/38376970&rft_ieee_id=10440521&rfr_iscdi=true |