Air-Coupled Ultrasonic Arrays for Assessment of Pipe Internal Geometry and Surface Condition
This article explores what useful information can be retrieved from pipeline interiors using an air-coupled ultrasonic array. Experiments are performed using an array, custom array controller, and supporting electronics controlled by a Raspberry Pi 4, mounted on board a crawler robot. A 64-transduce...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-04, Vol.71 (4), p.474-484 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 484 |
---|---|
container_issue | 4 |
container_start_page | 474 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 71 |
creator | Towlson, Alexander R. K. Croxford, Anthony J. Drinkwater, Bruce W. |
description | This article explores what useful information can be retrieved from pipeline interiors using an air-coupled ultrasonic array. Experiments are performed using an array, custom array controller, and supporting electronics controlled by a Raspberry Pi 4, mounted on board a crawler robot. A 64-transducer 40-kHz array configuration is selected based on uniformity of imaging amplitude over the circumference of the pipe wall. Testing revealed joints between pipe sections could be imaged at high amplitude, and that angular displacement between sections produced a different response to a properly aligned joint, potentially enabling detection of faulty joints. The surface roughness of some pipes also provides enough backscatter to be imaged, which is useful for detecting regions of corrosion. It was also found that reflections from the pipe wall in the plane of the array allow imaging of the wall shape. This can indicate the presence of junctions, as well as detect ovality to within 1%. These in-plane wall reflections were also found to be a source of low-amplitude coherent noise throughout the imaging domain, which is of similar amplitude to small (< 10 mm) through-holes in the pipe wall. |
doi_str_mv | 10.1109/TUFFC.2024.3362904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_38319764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10423030</ieee_id><sourcerecordid>2923324339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-4a41f35833af47236f4b416c8e776b7ec4e2d34882350b06477fa6a1f040fca53</originalsourceid><addsrcrecordid>eNpdkMFr2zAUh0VpWbNu_0AZRdDLLs6e9CRbPgbTdIHCCmtuA6HYT-BiW5lkH_Lf12myMXZ6l-_3wfsYuxWwFALKby_b9bpaSpBqiZjLEtQFWwgtdWZKrS_ZAozRGYKAa_YxpVcAoVQpP7BrNCjKIlcL9mvVxqwK076jhm-7MboUhrbmqxjdIXEfIl-lRCn1NIw8eP7c7olvhpHi4Dr-SKGnMR64Gxr-c4re1cSrMDTt2IbhE7vyrkv0-Xxv2Hb98FJ9z55-PG6q1VNWI-CYKaeER20QnVeFxNyrnRJ5bago8l1BtSLZoDJGooYd5KoovMud8KDA107jDft68u5j-D1RGm3fppq6zg0UpmRlKRGlQixn9P4_9DVMx1eSnUNpkGVuYKbkiapjSCmSt_vY9i4erAB7bG_f29tje3tuP4_uzupp11Pzd_In9gx8OQEtEf1jVHLOAPgGpOCG9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015029680</pqid></control><display><type>article</type><title>Air-Coupled Ultrasonic Arrays for Assessment of Pipe Internal Geometry and Surface Condition</title><source>IEEE Electronic Library (IEL)</source><creator>Towlson, Alexander R. K. ; Croxford, Anthony J. ; Drinkwater, Bruce W.</creator><creatorcontrib>Towlson, Alexander R. K. ; Croxford, Anthony J. ; Drinkwater, Bruce W.</creatorcontrib><description>This article explores what useful information can be retrieved from pipeline interiors using an air-coupled ultrasonic array. Experiments are performed using an array, custom array controller, and supporting electronics controlled by a Raspberry Pi 4, mounted on board a crawler robot. A 64-transducer 40-kHz array configuration is selected based on uniformity of imaging amplitude over the circumference of the pipe wall. Testing revealed joints between pipe sections could be imaged at high amplitude, and that angular displacement between sections produced a different response to a properly aligned joint, potentially enabling detection of faulty joints. The surface roughness of some pipes also provides enough backscatter to be imaged, which is useful for detecting regions of corrosion. It was also found that reflections from the pipe wall in the plane of the array allow imaging of the wall shape. This can indicate the presence of junctions, as well as detect ovality to within 1%. These in-plane wall reflections were also found to be a source of low-amplitude coherent noise throughout the imaging domain, which is of similar amplitude to small (< 10 mm) through-holes in the pipe wall.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3362904</identifier><identifier>PMID: 38319764</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Amplitudes ; Arrays ; Corrosion ; Imaging ; Information retrieval ; Nondestructive testing ; Pipelines ; Pipes ; Rough surfaces ; Surface roughness ; ultrasonic imaging ; ultrasonic transducer arrays</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-04, Vol.71 (4), p.474-484</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-4a41f35833af47236f4b416c8e776b7ec4e2d34882350b06477fa6a1f040fca53</cites><orcidid>0000-0002-8307-1175 ; 0000-0001-7458-8124 ; 0000-0003-1377-2694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10423030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10423030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38319764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Towlson, Alexander R. K.</creatorcontrib><creatorcontrib>Croxford, Anthony J.</creatorcontrib><creatorcontrib>Drinkwater, Bruce W.</creatorcontrib><title>Air-Coupled Ultrasonic Arrays for Assessment of Pipe Internal Geometry and Surface Condition</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This article explores what useful information can be retrieved from pipeline interiors using an air-coupled ultrasonic array. Experiments are performed using an array, custom array controller, and supporting electronics controlled by a Raspberry Pi 4, mounted on board a crawler robot. A 64-transducer 40-kHz array configuration is selected based on uniformity of imaging amplitude over the circumference of the pipe wall. Testing revealed joints between pipe sections could be imaged at high amplitude, and that angular displacement between sections produced a different response to a properly aligned joint, potentially enabling detection of faulty joints. The surface roughness of some pipes also provides enough backscatter to be imaged, which is useful for detecting regions of corrosion. It was also found that reflections from the pipe wall in the plane of the array allow imaging of the wall shape. This can indicate the presence of junctions, as well as detect ovality to within 1%. These in-plane wall reflections were also found to be a source of low-amplitude coherent noise throughout the imaging domain, which is of similar amplitude to small (< 10 mm) through-holes in the pipe wall.</description><subject>Acoustics</subject><subject>Amplitudes</subject><subject>Arrays</subject><subject>Corrosion</subject><subject>Imaging</subject><subject>Information retrieval</subject><subject>Nondestructive testing</subject><subject>Pipelines</subject><subject>Pipes</subject><subject>Rough surfaces</subject><subject>Surface roughness</subject><subject>ultrasonic imaging</subject><subject>ultrasonic transducer arrays</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFr2zAUh0VpWbNu_0AZRdDLLs6e9CRbPgbTdIHCCmtuA6HYT-BiW5lkH_Lf12myMXZ6l-_3wfsYuxWwFALKby_b9bpaSpBqiZjLEtQFWwgtdWZKrS_ZAozRGYKAa_YxpVcAoVQpP7BrNCjKIlcL9mvVxqwK076jhm-7MboUhrbmqxjdIXEfIl-lRCn1NIw8eP7c7olvhpHi4Dr-SKGnMR64Gxr-c4re1cSrMDTt2IbhE7vyrkv0-Xxv2Hb98FJ9z55-PG6q1VNWI-CYKaeER20QnVeFxNyrnRJ5bago8l1BtSLZoDJGooYd5KoovMud8KDA107jDft68u5j-D1RGm3fppq6zg0UpmRlKRGlQixn9P4_9DVMx1eSnUNpkGVuYKbkiapjSCmSt_vY9i4erAB7bG_f29tje3tuP4_uzupp11Pzd_In9gx8OQEtEf1jVHLOAPgGpOCG9w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Towlson, Alexander R. K.</creator><creator>Croxford, Anthony J.</creator><creator>Drinkwater, Bruce W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8307-1175</orcidid><orcidid>https://orcid.org/0000-0001-7458-8124</orcidid><orcidid>https://orcid.org/0000-0003-1377-2694</orcidid></search><sort><creationdate>20240401</creationdate><title>Air-Coupled Ultrasonic Arrays for Assessment of Pipe Internal Geometry and Surface Condition</title><author>Towlson, Alexander R. K. ; Croxford, Anthony J. ; Drinkwater, Bruce W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-4a41f35833af47236f4b416c8e776b7ec4e2d34882350b06477fa6a1f040fca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Amplitudes</topic><topic>Arrays</topic><topic>Corrosion</topic><topic>Imaging</topic><topic>Information retrieval</topic><topic>Nondestructive testing</topic><topic>Pipelines</topic><topic>Pipes</topic><topic>Rough surfaces</topic><topic>Surface roughness</topic><topic>ultrasonic imaging</topic><topic>ultrasonic transducer arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Towlson, Alexander R. K.</creatorcontrib><creatorcontrib>Croxford, Anthony J.</creatorcontrib><creatorcontrib>Drinkwater, Bruce W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Towlson, Alexander R. K.</au><au>Croxford, Anthony J.</au><au>Drinkwater, Bruce W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-Coupled Ultrasonic Arrays for Assessment of Pipe Internal Geometry and Surface Condition</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>71</volume><issue>4</issue><spage>474</spage><epage>484</epage><pages>474-484</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This article explores what useful information can be retrieved from pipeline interiors using an air-coupled ultrasonic array. Experiments are performed using an array, custom array controller, and supporting electronics controlled by a Raspberry Pi 4, mounted on board a crawler robot. A 64-transducer 40-kHz array configuration is selected based on uniformity of imaging amplitude over the circumference of the pipe wall. Testing revealed joints between pipe sections could be imaged at high amplitude, and that angular displacement between sections produced a different response to a properly aligned joint, potentially enabling detection of faulty joints. The surface roughness of some pipes also provides enough backscatter to be imaged, which is useful for detecting regions of corrosion. It was also found that reflections from the pipe wall in the plane of the array allow imaging of the wall shape. This can indicate the presence of junctions, as well as detect ovality to within 1%. These in-plane wall reflections were also found to be a source of low-amplitude coherent noise throughout the imaging domain, which is of similar amplitude to small (< 10 mm) through-holes in the pipe wall.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38319764</pmid><doi>10.1109/TUFFC.2024.3362904</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8307-1175</orcidid><orcidid>https://orcid.org/0000-0001-7458-8124</orcidid><orcidid>https://orcid.org/0000-0003-1377-2694</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-04, Vol.71 (4), p.474-484 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_pubmed_primary_38319764 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Amplitudes Arrays Corrosion Imaging Information retrieval Nondestructive testing Pipelines Pipes Rough surfaces Surface roughness ultrasonic imaging ultrasonic transducer arrays |
title | Air-Coupled Ultrasonic Arrays for Assessment of Pipe Internal Geometry and Surface Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-Coupled%20Ultrasonic%20Arrays%20for%20Assessment%20of%20Pipe%20Internal%20Geometry%20and%20Surface%20Condition&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Towlson,%20Alexander%20R.%20K.&rft.date=2024-04-01&rft.volume=71&rft.issue=4&rft.spage=474&rft.epage=484&rft.pages=474-484&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3362904&rft_dat=%3Cproquest_RIE%3E2923324339%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3015029680&rft_id=info:pmid/38319764&rft_ieee_id=10423030&rfr_iscdi=true |