Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3 (001) via metallic δ-doping

Superconductivity transition temperature ( ) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at , which is usually lower than the pairing temperature, between which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:National science review 2024-03, Vol.11 (3), p.nwad213
Hauptverfasser: Jiao, Xiaotong, Dong, Wenfeng, Shi, Mingxia, Wang, Heng, Ding, Cui, Wei, Zhongxu, Gong, Guanming, Li, Yanan, Li, Yuanzhao, Zuo, Binjie, Wang, Jian, Zhang, Ding, Pan, Minghu, Wang, Lili, Xue, Qi-Kun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page nwad213
container_title National science review
container_volume 11
creator Jiao, Xiaotong
Dong, Wenfeng
Shi, Mingxia
Wang, Heng
Ding, Cui
Wei, Zhongxu
Gong, Guanming
Li, Yanan
Li, Yuanzhao
Zuo, Binjie
Wang, Jian
Zhang, Ding
Pan, Minghu
Wang, Lili
Xue, Qi-Kun
description Superconductivity transition temperature ( ) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at , which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO (001), although the pairing temperature ( ) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO (001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width Δ ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO (001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38312379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38312379</sourcerecordid><originalsourceid>FETCH-pubmed_primary_383123793</originalsourceid><addsrcrecordid>eNqFjjEKwjAUQIMgKuoV5I86FNpGqc6iuDnUwa3E9Fe_JD8laYXey3N4Jh10dnrLg_d6YpTGKxllyfI8FNMQ7nEcJ-kqy2Q6EEO5lkkqs81I3HK6MlWkFTemA-SbYo0lhLZGrx2XrW7oQU0HxGAdO6M69LDHHKEiYwM4htyf6AgS5p_GAh6kwGKjjCENr2dUupr4OhH9SpmA0y_HYrbfnbaHqG4vFsui9mSV74rfmvwrvAENAkWH</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3 (001) via metallic δ-doping</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Jiao, Xiaotong ; Dong, Wenfeng ; Shi, Mingxia ; Wang, Heng ; Ding, Cui ; Wei, Zhongxu ; Gong, Guanming ; Li, Yanan ; Li, Yuanzhao ; Zuo, Binjie ; Wang, Jian ; Zhang, Ding ; Pan, Minghu ; Wang, Lili ; Xue, Qi-Kun</creator><creatorcontrib>Jiao, Xiaotong ; Dong, Wenfeng ; Shi, Mingxia ; Wang, Heng ; Ding, Cui ; Wei, Zhongxu ; Gong, Guanming ; Li, Yanan ; Li, Yuanzhao ; Zuo, Binjie ; Wang, Jian ; Zhang, Ding ; Pan, Minghu ; Wang, Lili ; Xue, Qi-Kun</creatorcontrib><description>Superconductivity transition temperature ( ) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at , which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO (001), although the pairing temperature ( ) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO (001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width Δ ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO (001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.</description><identifier>EISSN: 2053-714X</identifier><identifier>PMID: 38312379</identifier><language>eng</language><publisher>China</publisher><ispartof>National science review, 2024-03, Vol.11 (3), p.nwad213</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing &amp; Media Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1520-209X ; 0000-0001-6035-1660 ; 0000-0002-7212-0904 ; 0000-0003-0663-9238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38312379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Xiaotong</creatorcontrib><creatorcontrib>Dong, Wenfeng</creatorcontrib><creatorcontrib>Shi, Mingxia</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Ding, Cui</creatorcontrib><creatorcontrib>Wei, Zhongxu</creatorcontrib><creatorcontrib>Gong, Guanming</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Li, Yuanzhao</creatorcontrib><creatorcontrib>Zuo, Binjie</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Pan, Minghu</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Xue, Qi-Kun</creatorcontrib><title>Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3 (001) via metallic δ-doping</title><title>National science review</title><addtitle>Natl Sci Rev</addtitle><description>Superconductivity transition temperature ( ) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at , which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO (001), although the pairing temperature ( ) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO (001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width Δ ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO (001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.</description><issn>2053-714X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjjEKwjAUQIMgKuoV5I86FNpGqc6iuDnUwa3E9Fe_JD8laYXey3N4Jh10dnrLg_d6YpTGKxllyfI8FNMQ7nEcJ-kqy2Q6EEO5lkkqs81I3HK6MlWkFTemA-SbYo0lhLZGrx2XrW7oQU0HxGAdO6M69LDHHKEiYwM4htyf6AgS5p_GAh6kwGKjjCENr2dUupr4OhH9SpmA0y_HYrbfnbaHqG4vFsui9mSV74rfmvwrvAENAkWH</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Jiao, Xiaotong</creator><creator>Dong, Wenfeng</creator><creator>Shi, Mingxia</creator><creator>Wang, Heng</creator><creator>Ding, Cui</creator><creator>Wei, Zhongxu</creator><creator>Gong, Guanming</creator><creator>Li, Yanan</creator><creator>Li, Yuanzhao</creator><creator>Zuo, Binjie</creator><creator>Wang, Jian</creator><creator>Zhang, Ding</creator><creator>Pan, Minghu</creator><creator>Wang, Lili</creator><creator>Xue, Qi-Kun</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-1520-209X</orcidid><orcidid>https://orcid.org/0000-0001-6035-1660</orcidid><orcidid>https://orcid.org/0000-0002-7212-0904</orcidid><orcidid>https://orcid.org/0000-0003-0663-9238</orcidid></search><sort><creationdate>202403</creationdate><title>Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3 (001) via metallic δ-doping</title><author>Jiao, Xiaotong ; Dong, Wenfeng ; Shi, Mingxia ; Wang, Heng ; Ding, Cui ; Wei, Zhongxu ; Gong, Guanming ; Li, Yanan ; Li, Yuanzhao ; Zuo, Binjie ; Wang, Jian ; Zhang, Ding ; Pan, Minghu ; Wang, Lili ; Xue, Qi-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_383123793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Xiaotong</creatorcontrib><creatorcontrib>Dong, Wenfeng</creatorcontrib><creatorcontrib>Shi, Mingxia</creatorcontrib><creatorcontrib>Wang, Heng</creatorcontrib><creatorcontrib>Ding, Cui</creatorcontrib><creatorcontrib>Wei, Zhongxu</creatorcontrib><creatorcontrib>Gong, Guanming</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Li, Yuanzhao</creatorcontrib><creatorcontrib>Zuo, Binjie</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Pan, Minghu</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Xue, Qi-Kun</creatorcontrib><collection>PubMed</collection><jtitle>National science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Xiaotong</au><au>Dong, Wenfeng</au><au>Shi, Mingxia</au><au>Wang, Heng</au><au>Ding, Cui</au><au>Wei, Zhongxu</au><au>Gong, Guanming</au><au>Li, Yanan</au><au>Li, Yuanzhao</au><au>Zuo, Binjie</au><au>Wang, Jian</au><au>Zhang, Ding</au><au>Pan, Minghu</au><au>Wang, Lili</au><au>Xue, Qi-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3 (001) via metallic δ-doping</atitle><jtitle>National science review</jtitle><addtitle>Natl Sci Rev</addtitle><date>2024-03</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>nwad213</spage><pages>nwad213-</pages><eissn>2053-714X</eissn><abstract>Superconductivity transition temperature ( ) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at , which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO (001), although the pairing temperature ( ) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO (001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width Δ ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO (001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.</abstract><cop>China</cop><pmid>38312379</pmid><orcidid>https://orcid.org/0000-0002-1520-209X</orcidid><orcidid>https://orcid.org/0000-0001-6035-1660</orcidid><orcidid>https://orcid.org/0000-0002-7212-0904</orcidid><orcidid>https://orcid.org/0000-0003-0663-9238</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2053-714X
ispartof National science review, 2024-03, Vol.11 (3), p.nwad213
issn 2053-714X
language eng
recordid cdi_pubmed_primary_38312379
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
title Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3 (001) via metallic δ-doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significantly%20enhanced%20superconductivity%20in%20monolayer%20FeSe%20films%20on%20SrTiO%203%20(001)%20via%20metallic%20%CE%B4-doping&rft.jtitle=National%20science%20review&rft.au=Jiao,%20Xiaotong&rft.date=2024-03&rft.volume=11&rft.issue=3&rft.spage=nwad213&rft.pages=nwad213-&rft.eissn=2053-714X&rft_id=info:doi/&rft_dat=%3Cpubmed%3E38312379%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38312379&rfr_iscdi=true