Molecular modelling of fullerene C 60 functionalized by nitric oxide for use in biological environment

The unique potential of fullerene C for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-01, Vol.14 (1), p.2565
Hauptverfasser: Moztarzadeh, Omid, Jamshidi, Morteza, Taherpour, Avat Arman, Babuska, Vaclav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2565
container_title Scientific reports
container_volume 14
creator Moztarzadeh, Omid
Jamshidi, Morteza
Taherpour, Avat Arman
Babuska, Vaclav
description The unique potential of fullerene C for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C  + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C  + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.
doi_str_mv 10.1038/s41598-024-53050-y
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38297014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38297014</sourcerecordid><originalsourceid>FETCH-pubmed_primary_382970143</originalsourceid><addsrcrecordid>eNqFjr1OwzAURi0kRCvoCzCg-wIG_7bJXIFY2NgrJ7muLrqxKzupGp6eDjDzLUdHOsMnxKNWz1rZ5qU67dtGKuOkt8orudyItVHOS2ONWYlNrV_qOm9ap9s7sbKNaXdKu7WIH5mxnzkUGPOAzJSOkCPEmRkLJoQ9bNVVUz9RToHpGwfoFkg0FeohX2hAiLnAXBEoQUeZ85H6wIDpTCWnEdP0IG5j4IqbX96Lp7fXz_27PM3diMPhVGgMZTn8HbP_Bj-oeUrW</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular modelling of fullerene C 60 functionalized by nitric oxide for use in biological environment</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Moztarzadeh, Omid ; Jamshidi, Morteza ; Taherpour, Avat Arman ; Babuska, Vaclav</creator><creatorcontrib>Moztarzadeh, Omid ; Jamshidi, Morteza ; Taherpour, Avat Arman ; Babuska, Vaclav</creatorcontrib><description>The unique potential of fullerene C for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C  + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C  + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.</description><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-53050-y</identifier><identifier>PMID: 38297014</identifier><language>eng</language><publisher>England</publisher><subject>Electron Transport ; Fullerenes - chemistry ; Models, Molecular ; Molecular Structure ; Nitric Oxide</subject><ispartof>Scientific reports, 2024-01, Vol.14 (1), p.2565</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38297014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moztarzadeh, Omid</creatorcontrib><creatorcontrib>Jamshidi, Morteza</creatorcontrib><creatorcontrib>Taherpour, Avat Arman</creatorcontrib><creatorcontrib>Babuska, Vaclav</creatorcontrib><title>Molecular modelling of fullerene C 60 functionalized by nitric oxide for use in biological environment</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The unique potential of fullerene C for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C  + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C  + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.</description><subject>Electron Transport</subject><subject>Fullerenes - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Nitric Oxide</subject><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjr1OwzAURi0kRCvoCzCg-wIG_7bJXIFY2NgrJ7muLrqxKzupGp6eDjDzLUdHOsMnxKNWz1rZ5qU67dtGKuOkt8orudyItVHOS2ONWYlNrV_qOm9ap9s7sbKNaXdKu7WIH5mxnzkUGPOAzJSOkCPEmRkLJoQ9bNVVUz9RToHpGwfoFkg0FeohX2hAiLnAXBEoQUeZ85H6wIDpTCWnEdP0IG5j4IqbX96Lp7fXz_27PM3diMPhVGgMZTn8HbP_Bj-oeUrW</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Moztarzadeh, Omid</creator><creator>Jamshidi, Morteza</creator><creator>Taherpour, Avat Arman</creator><creator>Babuska, Vaclav</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20240131</creationdate><title>Molecular modelling of fullerene C 60 functionalized by nitric oxide for use in biological environment</title><author>Moztarzadeh, Omid ; Jamshidi, Morteza ; Taherpour, Avat Arman ; Babuska, Vaclav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_382970143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron Transport</topic><topic>Fullerenes - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Nitric Oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moztarzadeh, Omid</creatorcontrib><creatorcontrib>Jamshidi, Morteza</creatorcontrib><creatorcontrib>Taherpour, Avat Arman</creatorcontrib><creatorcontrib>Babuska, Vaclav</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moztarzadeh, Omid</au><au>Jamshidi, Morteza</au><au>Taherpour, Avat Arman</au><au>Babuska, Vaclav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular modelling of fullerene C 60 functionalized by nitric oxide for use in biological environment</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2024-01-31</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>2565</spage><pages>2565-</pages><eissn>2045-2322</eissn><abstract>The unique potential of fullerene C for various biological applications has ignited significant interest. However, its inherent non-polarity poses a critical challenge for its effective integration within biological systems. This study delves into the intricate physicochemical characteristics of the innovative [C  + NO] complex using density functional theory and time-dependent density functional theory. The computational analyses encompass molecular charge, surface electrostatic potential, and dipole moment evaluations. Impressively, the dipole moment of the [C  + NO] complex significantly increases to 12.92 D. Meticulous surface analysis reveals a subtle interplay between molecular structures, indicating weak interactions. The analysis of the absorption spectrum unveils a noteworthy red-shift of 200 nm subsequent to complex formation. To elucidate the electron transfer mechanisms, we explore photo-induced electron transfer through CAM-B3LYP. This exploration elucidates intricate pathways governing electron transfer, with complementary insights gleaned from Marcus theory's outputs, especially the Gibbs free energy of electron transfer. Changes in the physicochemical properties of approaching C and NO molecules reveal interesting results compared to separate molecules. These findings resonate profoundly in the context of potential biological and pharmaceutical utilization. With implications for the biomedical area, the outcomes linked to the [C60 + NO] complex kindle optimism for pioneering biomedical applications.</abstract><cop>England</cop><pmid>38297014</pmid><doi>10.1038/s41598-024-53050-y</doi></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2024-01, Vol.14 (1), p.2565
issn 2045-2322
language eng
recordid cdi_pubmed_primary_38297014
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Electron Transport
Fullerenes - chemistry
Models, Molecular
Molecular Structure
Nitric Oxide
title Molecular modelling of fullerene C 60 functionalized by nitric oxide for use in biological environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20modelling%20of%20fullerene%20C%2060%20functionalized%20by%20nitric%20oxide%20for%20use%20in%20biological%20environment&rft.jtitle=Scientific%20reports&rft.au=Moztarzadeh,%20Omid&rft.date=2024-01-31&rft.volume=14&rft.issue=1&rft.spage=2565&rft.pages=2565-&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-53050-y&rft_dat=%3Cpubmed%3E38297014%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38297014&rfr_iscdi=true