Differential disruption of response alternation by precipitated Δ 9 -THC withdrawal and subsequent Δ 9 -THC abstinence in mice

In addition to overt somatic symptoms, cannabinoid withdrawal can also manifest as disruptions in motivation and attention. Experimental animal models using operant-conditioning approaches reveal these differences, in either antagonist-precipitated or spontaneous withdrawal models. However, these pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology, biochemistry and behavior biochemistry and behavior, 2024-03, Vol.236, p.173718
Hauptverfasser: Eckard, Matthew L, Kinsey, Steven G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to overt somatic symptoms, cannabinoid withdrawal can also manifest as disruptions in motivation and attention. Experimental animal models using operant-conditioning approaches reveal these differences, in either antagonist-precipitated or spontaneous withdrawal models. However, these processes have yet to be characterized in the same subjects simultaneously. To differentiate between motivational and attentional processes disrupted in cannabinoid withdrawal, the current study used a response alternation task in which a fixed-ratio (FR) schedule repeatedly alternated between two spatially distinct response options throughout daily training sessions. This task yielded traditional measures of motivation (e.g., response latency) as well as attention (e.g., responses to the incorrect side). After two weeks of training, male and female C57BL/6 J mice either received vehicle or Δ -THC (10 mg/kg, s.c.) twice daily for 5 days. On the 6th day, all mice received their final injection of vehicle or Δ -THC followed 30 min later by injection of the CB receptor selective inverse agonist rimonabant (2 mg/kg, i.p.) to precipitate withdrawal. Testing continued for 3 days post-rimonabant to assess how THC abstinence impacted task performance. Whereas rimonabant decreased response rates to equal degrees in THC-treated and vehicle-treated mice, THC-treated mice showed longer session times, longer response latencies, and more errors per reinforcer. Only THC-treated mice showed a longer latency to switch after committing an error reflecting that precipitated withdrawal impacted measures of both motivation and attention. During the 3-day abstinence window, performance of vehicle-treated mice returned to baseline, but THC-treated mice continued to show disruptions in motivational measures. Importantly, attentional measures (errors and latency to switch after an error) were unaffected by THC abstinence. These data suggest that precipitated and "spontaneous" cannabinoid withdrawal may be qualitatively and quantitatively distinct withdrawal conditions with precipitated withdrawal disrupting both attentional and motivational processes, while abstinence may only affect motivation.
ISSN:1873-5177