Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations

To Develop a physical grid collimator compatible with the X-RAD preclinical radiotherapy system and create a corresponding Monte Carlo (MC) model. Approach: This work presents a methodology for the fabrication of a grid collimator designed for utilisation on the X-RAD preclinical radiotherapy system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-03, Vol.69 (5), p.55010
Hauptverfasser: Fisk, Marcus, Rowshanfarzad, Pejman, Pfefferlé, David, Fernandez de Viana, Matthew, Cabrera, Julian, Ebert, Martin A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55010
container_title Physics in medicine & biology
container_volume 69
creator Fisk, Marcus
Rowshanfarzad, Pejman
Pfefferlé, David
Fernandez de Viana, Matthew
Cabrera, Julian
Ebert, Martin A
description To Develop a physical grid collimator compatible with the X-RAD preclinical radiotherapy system and create a corresponding Monte Carlo (MC) model. Approach: This work presents a methodology for the fabrication of a grid collimator designed for utilisation on the X-RAD preclinical radiotherapy system. Additionally, a MC simulation of the grid is developed, which is compatible with the X-RAD treatment planning system. The grid was manufactured by casting a low melting point alloy, cerrobend, into a silicone mould. The silicone was moulded around a 3D-printed replica of the grid, enabling the production of diverging holes with precise radii and spacing. A MC simulation was conducted on an equivalent 3D grid model and validated using 11 layers of GAFChromic EBT-3 film interspersed in a 3D-printed water-equivalent phantom. A 3D dose distribution was constructed from the film layers, enabling a direct comparison with the MC Simulation. Main results: The film and the MC dose distribution demonstrated a gamma passing rate of 99% for a 1%, 0.5mm criteria with a 10% threshold applied. The peak-to-valley dose ratio (PVDR) and output factor at the surface were determined to be 20.4 and 0.79, respectively. Significance: The pairing of the grid collimator with a MC simulation can significantly enhance the practicality of grid therapy on the X-RAD. This combination enables further exploration of the biological implications of grid therapy, supported by a knowledge of the complex dose distributions. Moreover, this methodology can be adapted for use in other systems and scenarios.
doi_str_mv 10.1088/1361-6560/ad21a1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38262060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918198394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d988b5820b31aaa686707088e7510c88f8047a689b6bbcbb894aa05a1b447b393</originalsourceid><addsrcrecordid>eNp1kEFv1DAQRi0EotvCnRPyDQ6EjuPYcY5ogYJUxAXO1jhxiqvENraDtEf-Od5u6QlOI43e943mEfKCwVsGSl0yLlkjhYRLnFqG7BHZPawekx0AZ83AhDgj5znfAjCm2u4pOeOqlS1I2JHf7-0vu4S4Wl8o-omGWNzqMhYXPA0zvUluos5nm0qmc0gUaUx2XJx3Iy404eRC-WETxgPNh1zselczhpRsjsFPzt_QL8EXS_eYlkCNxZVmt27L3Y38jDyZccn2-f28IN8_fvi2_9Rcf736vH933Yxc8tJMg1JGqBYMZ4goleyhrw5sLxiMSs0Kur6uByONGY1RQ4cIApnput7wgV-Q16femMLPzeai65ujXRb0NmxZtwNTbFB86CoKJ3RMIedkZx2TWzEdNAN9FK-PlvXRsj6Jr5GX9-2bWe30EPhrugKvToALUd-GLfn6rI6r0XLQQoMQUMvjNFfyzT_I_17-AyObm70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918198394</pqid></control><display><type>article</type><title>Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations</title><source>Institute of Physics Journals</source><creator>Fisk, Marcus ; Rowshanfarzad, Pejman ; Pfefferlé, David ; Fernandez de Viana, Matthew ; Cabrera, Julian ; Ebert, Martin A</creator><creatorcontrib>Fisk, Marcus ; Rowshanfarzad, Pejman ; Pfefferlé, David ; Fernandez de Viana, Matthew ; Cabrera, Julian ; Ebert, Martin A</creatorcontrib><description>To Develop a physical grid collimator compatible with the X-RAD preclinical radiotherapy system and create a corresponding Monte Carlo (MC) model. Approach: This work presents a methodology for the fabrication of a grid collimator designed for utilisation on the X-RAD preclinical radiotherapy system. Additionally, a MC simulation of the grid is developed, which is compatible with the X-RAD treatment planning system. The grid was manufactured by casting a low melting point alloy, cerrobend, into a silicone mould. The silicone was moulded around a 3D-printed replica of the grid, enabling the production of diverging holes with precise radii and spacing. A MC simulation was conducted on an equivalent 3D grid model and validated using 11 layers of GAFChromic EBT-3 film interspersed in a 3D-printed water-equivalent phantom. A 3D dose distribution was constructed from the film layers, enabling a direct comparison with the MC Simulation. Main results: The film and the MC dose distribution demonstrated a gamma passing rate of 99% for a 1%, 0.5mm criteria with a 10% threshold applied. The peak-to-valley dose ratio (PVDR) and output factor at the surface were determined to be 20.4 and 0.79, respectively. Significance: The pairing of the grid collimator with a MC simulation can significantly enhance the practicality of grid therapy on the X-RAD. This combination enables further exploration of the biological implications of grid therapy, supported by a knowledge of the complex dose distributions. Moreover, this methodology can be adapted for use in other systems and scenarios.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad21a1</identifier><identifier>PMID: 38262060</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>grid therapy ; Monte Carlo simulation ; small animal radiotherapy</subject><ispartof>Physics in medicine &amp; biology, 2024-03, Vol.69 (5), p.55010</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>2024 Institute of Physics and Engineering in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-d988b5820b31aaa686707088e7510c88f8047a689b6bbcbb894aa05a1b447b393</cites><orcidid>0000-0002-6875-0719 ; 0000-0001-8306-7742 ; 0000-0002-1071-6614 ; 0009-0002-7052-4478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad21a1/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38262060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisk, Marcus</creatorcontrib><creatorcontrib>Rowshanfarzad, Pejman</creatorcontrib><creatorcontrib>Pfefferlé, David</creatorcontrib><creatorcontrib>Fernandez de Viana, Matthew</creatorcontrib><creatorcontrib>Cabrera, Julian</creatorcontrib><creatorcontrib>Ebert, Martin A</creatorcontrib><title>Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>To Develop a physical grid collimator compatible with the X-RAD preclinical radiotherapy system and create a corresponding Monte Carlo (MC) model. Approach: This work presents a methodology for the fabrication of a grid collimator designed for utilisation on the X-RAD preclinical radiotherapy system. Additionally, a MC simulation of the grid is developed, which is compatible with the X-RAD treatment planning system. The grid was manufactured by casting a low melting point alloy, cerrobend, into a silicone mould. The silicone was moulded around a 3D-printed replica of the grid, enabling the production of diverging holes with precise radii and spacing. A MC simulation was conducted on an equivalent 3D grid model and validated using 11 layers of GAFChromic EBT-3 film interspersed in a 3D-printed water-equivalent phantom. A 3D dose distribution was constructed from the film layers, enabling a direct comparison with the MC Simulation. Main results: The film and the MC dose distribution demonstrated a gamma passing rate of 99% for a 1%, 0.5mm criteria with a 10% threshold applied. The peak-to-valley dose ratio (PVDR) and output factor at the surface were determined to be 20.4 and 0.79, respectively. Significance: The pairing of the grid collimator with a MC simulation can significantly enhance the practicality of grid therapy on the X-RAD. This combination enables further exploration of the biological implications of grid therapy, supported by a knowledge of the complex dose distributions. Moreover, this methodology can be adapted for use in other systems and scenarios.</description><subject>grid therapy</subject><subject>Monte Carlo simulation</subject><subject>small animal radiotherapy</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEFv1DAQRi0EotvCnRPyDQ6EjuPYcY5ogYJUxAXO1jhxiqvENraDtEf-Od5u6QlOI43e943mEfKCwVsGSl0yLlkjhYRLnFqG7BHZPawekx0AZ83AhDgj5znfAjCm2u4pOeOqlS1I2JHf7-0vu4S4Wl8o-omGWNzqMhYXPA0zvUluos5nm0qmc0gUaUx2XJx3Iy404eRC-WETxgPNh1zselczhpRsjsFPzt_QL8EXS_eYlkCNxZVmt27L3Y38jDyZccn2-f28IN8_fvi2_9Rcf736vH933Yxc8tJMg1JGqBYMZ4goleyhrw5sLxiMSs0Kur6uByONGY1RQ4cIApnput7wgV-Q16femMLPzeai65ujXRb0NmxZtwNTbFB86CoKJ3RMIedkZx2TWzEdNAN9FK-PlvXRsj6Jr5GX9-2bWe30EPhrugKvToALUd-GLfn6rI6r0XLQQoMQUMvjNFfyzT_I_17-AyObm70</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Fisk, Marcus</creator><creator>Rowshanfarzad, Pejman</creator><creator>Pfefferlé, David</creator><creator>Fernandez de Viana, Matthew</creator><creator>Cabrera, Julian</creator><creator>Ebert, Martin A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6875-0719</orcidid><orcidid>https://orcid.org/0000-0001-8306-7742</orcidid><orcidid>https://orcid.org/0000-0002-1071-6614</orcidid><orcidid>https://orcid.org/0009-0002-7052-4478</orcidid></search><sort><creationdate>20240307</creationdate><title>Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations</title><author>Fisk, Marcus ; Rowshanfarzad, Pejman ; Pfefferlé, David ; Fernandez de Viana, Matthew ; Cabrera, Julian ; Ebert, Martin A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d988b5820b31aaa686707088e7510c88f8047a689b6bbcbb894aa05a1b447b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>grid therapy</topic><topic>Monte Carlo simulation</topic><topic>small animal radiotherapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisk, Marcus</creatorcontrib><creatorcontrib>Rowshanfarzad, Pejman</creatorcontrib><creatorcontrib>Pfefferlé, David</creatorcontrib><creatorcontrib>Fernandez de Viana, Matthew</creatorcontrib><creatorcontrib>Cabrera, Julian</creatorcontrib><creatorcontrib>Ebert, Martin A</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisk, Marcus</au><au>Rowshanfarzad, Pejman</au><au>Pfefferlé, David</au><au>Fernandez de Viana, Matthew</au><au>Cabrera, Julian</au><au>Ebert, Martin A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>69</volume><issue>5</issue><spage>55010</spage><pages>55010-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>To Develop a physical grid collimator compatible with the X-RAD preclinical radiotherapy system and create a corresponding Monte Carlo (MC) model. Approach: This work presents a methodology for the fabrication of a grid collimator designed for utilisation on the X-RAD preclinical radiotherapy system. Additionally, a MC simulation of the grid is developed, which is compatible with the X-RAD treatment planning system. The grid was manufactured by casting a low melting point alloy, cerrobend, into a silicone mould. The silicone was moulded around a 3D-printed replica of the grid, enabling the production of diverging holes with precise radii and spacing. A MC simulation was conducted on an equivalent 3D grid model and validated using 11 layers of GAFChromic EBT-3 film interspersed in a 3D-printed water-equivalent phantom. A 3D dose distribution was constructed from the film layers, enabling a direct comparison with the MC Simulation. Main results: The film and the MC dose distribution demonstrated a gamma passing rate of 99% for a 1%, 0.5mm criteria with a 10% threshold applied. The peak-to-valley dose ratio (PVDR) and output factor at the surface were determined to be 20.4 and 0.79, respectively. Significance: The pairing of the grid collimator with a MC simulation can significantly enhance the practicality of grid therapy on the X-RAD. This combination enables further exploration of the biological implications of grid therapy, supported by a knowledge of the complex dose distributions. Moreover, this methodology can be adapted for use in other systems and scenarios.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38262060</pmid><doi>10.1088/1361-6560/ad21a1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6875-0719</orcidid><orcidid>https://orcid.org/0000-0001-8306-7742</orcidid><orcidid>https://orcid.org/0000-0002-1071-6614</orcidid><orcidid>https://orcid.org/0009-0002-7052-4478</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-03, Vol.69 (5), p.55010
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_38262060
source Institute of Physics Journals
subjects grid therapy
Monte Carlo simulation
small animal radiotherapy
title Development and optimisation of grid inserts for a preclinical radiotherapy system and corresponding Monte Carlo beam simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20optimisation%20of%20grid%20inserts%20for%20a%20preclinical%20radiotherapy%20system%20and%20corresponding%20Monte%20Carlo%20beam%20simulations&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Fisk,%20Marcus&rft.date=2024-03-07&rft.volume=69&rft.issue=5&rft.spage=55010&rft.pages=55010-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad21a1&rft_dat=%3Cproquest_pubme%3E2918198394%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918198394&rft_id=info:pmid/38262060&rfr_iscdi=true