Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers
A 2D U-Net was trained to generate synthetic T maps from T maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee image...
Gespeichert in:
Veröffentlicht in: | Bioengineering (Basel) 2023-12, Vol.11 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Bioengineering (Basel) |
container_volume | 11 |
creator | Tong, Michelle W Tolpadi, Aniket A Bhattacharjee, Rupsa Han, Misung Majumdar, Sharmila Pedoia, Valentina |
description | A 2D U-Net was trained to generate synthetic T
maps from T
maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T
maps, preserving textures and local T
elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T
maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T
textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T
as a quantitative biomarker for osteoarthritis. |
doi_str_mv | 10.3390/bioengineering11010017 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38247894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38247894</sourcerecordid><originalsourceid>FETCH-pubmed_primary_382478943</originalsourceid><addsrcrecordid>eNqFjt1KAzEUhIMottS-QjkvUE02u_251KJYpEh178tpPdseTU-WJFvo25sLBe-EgZmBj2GUGhl9a-1c323Zk-xZiALL3hhttDbTC9UvrJ6MK1uVl39yTw1j_NQZsUVVTMpr1bOzopzO5mVfufezpAMl3sFL3oPV2xJqMC2ssI2AWQL3J5KOoPEBFo6Fd-igDijRYWIv4BtYdyiJU-4ngteYyGNIh8CJIzywP2L4ohBv1FWDLtLwxwdq9PRYL57Hbbc90semDZzJ8-b3nv0X-AZIIlF5</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Tong, Michelle W ; Tolpadi, Aniket A ; Bhattacharjee, Rupsa ; Han, Misung ; Majumdar, Sharmila ; Pedoia, Valentina</creator><creatorcontrib>Tong, Michelle W ; Tolpadi, Aniket A ; Bhattacharjee, Rupsa ; Han, Misung ; Majumdar, Sharmila ; Pedoia, Valentina</creatorcontrib><description>A 2D U-Net was trained to generate synthetic T
maps from T
maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T
maps, preserving textures and local T
elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T
maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T
textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T
as a quantitative biomarker for osteoarthritis.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering11010017</identifier><identifier>PMID: 38247894</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Bioengineering (Basel), 2023-12, Vol.11 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8766-7542 ; 0000-0001-9893-3527 ; 0000-0002-3974-4838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38247894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Michelle W</creatorcontrib><creatorcontrib>Tolpadi, Aniket A</creatorcontrib><creatorcontrib>Bhattacharjee, Rupsa</creatorcontrib><creatorcontrib>Han, Misung</creatorcontrib><creatorcontrib>Majumdar, Sharmila</creatorcontrib><creatorcontrib>Pedoia, Valentina</creatorcontrib><title>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>A 2D U-Net was trained to generate synthetic T
maps from T
maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T
maps, preserving textures and local T
elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T
maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T
textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T
as a quantitative biomarker for osteoarthritis.</description><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFjt1KAzEUhIMottS-QjkvUE02u_251KJYpEh178tpPdseTU-WJFvo25sLBe-EgZmBj2GUGhl9a-1c323Zk-xZiALL3hhttDbTC9UvrJ6MK1uVl39yTw1j_NQZsUVVTMpr1bOzopzO5mVfufezpAMl3sFL3oPV2xJqMC2ssI2AWQL3J5KOoPEBFo6Fd-igDijRYWIv4BtYdyiJU-4ngteYyGNIh8CJIzywP2L4ohBv1FWDLtLwxwdq9PRYL57Hbbc90semDZzJ8-b3nv0X-AZIIlF5</recordid><startdate>20231224</startdate><enddate>20231224</enddate><creator>Tong, Michelle W</creator><creator>Tolpadi, Aniket A</creator><creator>Bhattacharjee, Rupsa</creator><creator>Han, Misung</creator><creator>Majumdar, Sharmila</creator><creator>Pedoia, Valentina</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-8766-7542</orcidid><orcidid>https://orcid.org/0000-0001-9893-3527</orcidid><orcidid>https://orcid.org/0000-0002-3974-4838</orcidid></search><sort><creationdate>20231224</creationdate><title>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</title><author>Tong, Michelle W ; Tolpadi, Aniket A ; Bhattacharjee, Rupsa ; Han, Misung ; Majumdar, Sharmila ; Pedoia, Valentina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_382478943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Michelle W</creatorcontrib><creatorcontrib>Tolpadi, Aniket A</creatorcontrib><creatorcontrib>Bhattacharjee, Rupsa</creatorcontrib><creatorcontrib>Han, Misung</creatorcontrib><creatorcontrib>Majumdar, Sharmila</creatorcontrib><creatorcontrib>Pedoia, Valentina</creatorcontrib><collection>PubMed</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Michelle W</au><au>Tolpadi, Aniket A</au><au>Bhattacharjee, Rupsa</au><au>Han, Misung</au><au>Majumdar, Sharmila</au><au>Pedoia, Valentina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2023-12-24</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>A 2D U-Net was trained to generate synthetic T
maps from T
maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T
maps, preserving textures and local T
elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T
maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T
textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T
as a quantitative biomarker for osteoarthritis.</abstract><cop>Switzerland</cop><pmid>38247894</pmid><doi>10.3390/bioengineering11010017</doi><orcidid>https://orcid.org/0000-0001-8766-7542</orcidid><orcidid>https://orcid.org/0000-0001-9893-3527</orcidid><orcidid>https://orcid.org/0000-0002-3974-4838</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-5354 |
ispartof | Bioengineering (Basel), 2023-12, Vol.11 (1) |
issn | 2306-5354 2306-5354 |
language | eng |
recordid | cdi_pubmed_primary_38247894 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
title | Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Knee%20MRI%20T%201p%20Maps%20as%20an%20Avenue%20for%20Clinical%20Translation%20of%20Quantitative%20Osteoarthritis%20Biomarkers&rft.jtitle=Bioengineering%20(Basel)&rft.au=Tong,%20Michelle%20W&rft.date=2023-12-24&rft.volume=11&rft.issue=1&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering11010017&rft_dat=%3Cpubmed%3E38247894%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38247894&rfr_iscdi=true |