Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers

A 2D U-Net was trained to generate synthetic T maps from T maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) 2023-12, Vol.11 (1)
Hauptverfasser: Tong, Michelle W, Tolpadi, Aniket A, Bhattacharjee, Rupsa, Han, Misung, Majumdar, Sharmila, Pedoia, Valentina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Bioengineering (Basel)
container_volume 11
creator Tong, Michelle W
Tolpadi, Aniket A
Bhattacharjee, Rupsa
Han, Misung
Majumdar, Sharmila
Pedoia, Valentina
description A 2D U-Net was trained to generate synthetic T maps from T maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T maps, preserving textures and local T elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T as a quantitative biomarker for osteoarthritis.
doi_str_mv 10.3390/bioengineering11010017
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38247894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38247894</sourcerecordid><originalsourceid>FETCH-pubmed_primary_382478943</originalsourceid><addsrcrecordid>eNqFjt1KAzEUhIMottS-QjkvUE02u_251KJYpEh178tpPdseTU-WJFvo25sLBe-EgZmBj2GUGhl9a-1c323Zk-xZiALL3hhttDbTC9UvrJ6MK1uVl39yTw1j_NQZsUVVTMpr1bOzopzO5mVfufezpAMl3sFL3oPV2xJqMC2ssI2AWQL3J5KOoPEBFo6Fd-igDijRYWIv4BtYdyiJU-4ngteYyGNIh8CJIzywP2L4ohBv1FWDLtLwxwdq9PRYL57Hbbc90semDZzJ8-b3nv0X-AZIIlF5</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Tong, Michelle W ; Tolpadi, Aniket A ; Bhattacharjee, Rupsa ; Han, Misung ; Majumdar, Sharmila ; Pedoia, Valentina</creator><creatorcontrib>Tong, Michelle W ; Tolpadi, Aniket A ; Bhattacharjee, Rupsa ; Han, Misung ; Majumdar, Sharmila ; Pedoia, Valentina</creatorcontrib><description>A 2D U-Net was trained to generate synthetic T maps from T maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T maps, preserving textures and local T elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T as a quantitative biomarker for osteoarthritis.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering11010017</identifier><identifier>PMID: 38247894</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Bioengineering (Basel), 2023-12, Vol.11 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8766-7542 ; 0000-0001-9893-3527 ; 0000-0002-3974-4838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38247894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Michelle W</creatorcontrib><creatorcontrib>Tolpadi, Aniket A</creatorcontrib><creatorcontrib>Bhattacharjee, Rupsa</creatorcontrib><creatorcontrib>Han, Misung</creatorcontrib><creatorcontrib>Majumdar, Sharmila</creatorcontrib><creatorcontrib>Pedoia, Valentina</creatorcontrib><title>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>A 2D U-Net was trained to generate synthetic T maps from T maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T maps, preserving textures and local T elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T as a quantitative biomarker for osteoarthritis.</description><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFjt1KAzEUhIMottS-QjkvUE02u_251KJYpEh178tpPdseTU-WJFvo25sLBe-EgZmBj2GUGhl9a-1c323Zk-xZiALL3hhttDbTC9UvrJ6MK1uVl39yTw1j_NQZsUVVTMpr1bOzopzO5mVfufezpAMl3sFL3oPV2xJqMC2ssI2AWQL3J5KOoPEBFo6Fd-igDijRYWIv4BtYdyiJU-4ngteYyGNIh8CJIzywP2L4ohBv1FWDLtLwxwdq9PRYL57Hbbc90semDZzJ8-b3nv0X-AZIIlF5</recordid><startdate>20231224</startdate><enddate>20231224</enddate><creator>Tong, Michelle W</creator><creator>Tolpadi, Aniket A</creator><creator>Bhattacharjee, Rupsa</creator><creator>Han, Misung</creator><creator>Majumdar, Sharmila</creator><creator>Pedoia, Valentina</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-8766-7542</orcidid><orcidid>https://orcid.org/0000-0001-9893-3527</orcidid><orcidid>https://orcid.org/0000-0002-3974-4838</orcidid></search><sort><creationdate>20231224</creationdate><title>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</title><author>Tong, Michelle W ; Tolpadi, Aniket A ; Bhattacharjee, Rupsa ; Han, Misung ; Majumdar, Sharmila ; Pedoia, Valentina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_382478943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Michelle W</creatorcontrib><creatorcontrib>Tolpadi, Aniket A</creatorcontrib><creatorcontrib>Bhattacharjee, Rupsa</creatorcontrib><creatorcontrib>Han, Misung</creatorcontrib><creatorcontrib>Majumdar, Sharmila</creatorcontrib><creatorcontrib>Pedoia, Valentina</creatorcontrib><collection>PubMed</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Michelle W</au><au>Tolpadi, Aniket A</au><au>Bhattacharjee, Rupsa</au><au>Han, Misung</au><au>Majumdar, Sharmila</au><au>Pedoia, Valentina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2023-12-24</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>A 2D U-Net was trained to generate synthetic T maps from T maps for knee MRI to explore the feasibility of domain adaptation for enriching existing datasets and enabling rapid, reliable image reconstruction. The network was developed using 509 healthy contralateral and injured ipsilateral knee images from patients with ACL injuries and reconstruction surgeries acquired across three institutions. Network generalizability was evaluated on 343 knees acquired in a clinical setting and 46 knees from simultaneous bilateral acquisition in a research setting. The deep neural network synthesized high-fidelity reconstructions of T maps, preserving textures and local T elevation patterns in cartilage with a normalized mean square error of 2.4% and Pearson's correlation coefficient of 0.93. Analysis of reconstructed T maps within cartilage compartments revealed minimal bias (-0.10 ms), tight limits of agreement, and quantification error (5.7%) below the threshold for clinically significant change (6.42%) associated with osteoarthritis. In an out-of-distribution external test set, synthetic maps preserved T textures, but exhibited increased bias and wider limits of agreement. This study demonstrates the capability of image synthesis to reduce acquisition time, derive meaningful information from existing datasets, and suggest a pathway for standardizing T as a quantitative biomarker for osteoarthritis.</abstract><cop>Switzerland</cop><pmid>38247894</pmid><doi>10.3390/bioengineering11010017</doi><orcidid>https://orcid.org/0000-0001-8766-7542</orcidid><orcidid>https://orcid.org/0000-0001-9893-3527</orcidid><orcidid>https://orcid.org/0000-0002-3974-4838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2023-12, Vol.11 (1)
issn 2306-5354
2306-5354
language eng
recordid cdi_pubmed_primary_38247894
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
title Synthetic Knee MRI T 1p Maps as an Avenue for Clinical Translation of Quantitative Osteoarthritis Biomarkers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Knee%20MRI%20T%201p%20Maps%20as%20an%20Avenue%20for%20Clinical%20Translation%20of%20Quantitative%20Osteoarthritis%20Biomarkers&rft.jtitle=Bioengineering%20(Basel)&rft.au=Tong,%20Michelle%20W&rft.date=2023-12-24&rft.volume=11&rft.issue=1&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering11010017&rft_dat=%3Cpubmed%3E38247894%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38247894&rfr_iscdi=true