Microencapsulated Perovskite Crystals via In-Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing A Record Long-Term Stability Beyond 10,000 Hours for Perovskite Solar Cells

Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability were predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction (MEC) strategy was proposed for the first time to optimize the crystalliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-01, p.e2313080
Hauptverfasser: Xu, Yibo, Wang, Shirong, Liu, Hongli, Li, Xianggao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2313080
container_title Advanced materials (Weinheim)
container_volume
creator Xu, Yibo
Wang, Shirong
Liu, Hongli
Li, Xianggao
description Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability were predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction (MEC) strategy was proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-Acrylamidopyridine) (poly(4-AcM)) network on PbI surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 μm and reduced trap density from 1.12 × 10 to 2.56 × 10 cm . Moverover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite was markedly suppressed. Resultant PSCs gained a robust power conversion effiency (PCE) of 24.04%. Typically, they maintained 91% of their initial PCE for 13,008 hours in a desiccated ambient environment and retained 92% PCE after storage for 4,000 hours with a relative humidity of 50±10%, which is the state-of-the-art long-term stability among the reported contributions. This article is protected by copyright. All rights reserved.
doi_str_mv 10.1002/adma.202313080
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38242543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38242543</sourcerecordid><originalsourceid>FETCH-pubmed_primary_382425433</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxhdBbP1z9SjzAKZukra03mqoVlAotvcyTbZxdbMTZjfRfVTfxlQUxIun-WB-M_N9I8R5LAexlMkVFhUOEpmkcSon8kD041ESR0M5HfXEsXMvUsrpWI6PRC-dJMNkNEz74uNR50zK5li7xqBXBSwVU-tetVeQcXAejYNWI9zbaKV9s-9XCr0mC3dMb_4ZdkwVLMmESjH8Wdhh0fy9Ruv2KiPrGfOv4VWnvCrDNcyKFm2ubQkzeFI5cQEPZMto3V3qMNxqo32AGxXIFhDLyy4JLKhhBzvi34ZXZJAhU8a4U3G466yrs-96Ii5u5-tsEdXNtlLFpmZdIYfNzy_Sf4FP-T10BA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microencapsulated Perovskite Crystals via In-Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing A Record Long-Term Stability Beyond 10,000 Hours for Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Yibo ; Wang, Shirong ; Liu, Hongli ; Li, Xianggao</creator><creatorcontrib>Xu, Yibo ; Wang, Shirong ; Liu, Hongli ; Li, Xianggao</creatorcontrib><description>Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability were predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction (MEC) strategy was proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-Acrylamidopyridine) (poly(4-AcM)) network on PbI surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 μm and reduced trap density from 1.12 × 10 to 2.56 × 10 cm . Moverover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite was markedly suppressed. Resultant PSCs gained a robust power conversion effiency (PCE) of 24.04%. Typically, they maintained 91% of their initial PCE for 13,008 hours in a desiccated ambient environment and retained 92% PCE after storage for 4,000 hours with a relative humidity of 50±10%, which is the state-of-the-art long-term stability among the reported contributions. This article is protected by copyright. All rights reserved.</description><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202313080</identifier><identifier>PMID: 38242543</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-01, p.e2313080</ispartof><rights>This article is protected by copyright. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6127-1742 ; 0000-0002-9942-9071 ; 0000-0002-6396-8292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38242543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Wang, Shirong</creatorcontrib><creatorcontrib>Liu, Hongli</creatorcontrib><creatorcontrib>Li, Xianggao</creatorcontrib><title>Microencapsulated Perovskite Crystals via In-Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing A Record Long-Term Stability Beyond 10,000 Hours for Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability were predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction (MEC) strategy was proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-Acrylamidopyridine) (poly(4-AcM)) network on PbI surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 μm and reduced trap density from 1.12 × 10 to 2.56 × 10 cm . Moverover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite was markedly suppressed. Resultant PSCs gained a robust power conversion effiency (PCE) of 24.04%. Typically, they maintained 91% of their initial PCE for 13,008 hours in a desiccated ambient environment and retained 92% PCE after storage for 4,000 hours with a relative humidity of 50±10%, which is the state-of-the-art long-term stability among the reported contributions. This article is protected by copyright. All rights reserved.</description><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxhdBbP1z9SjzAKZukra03mqoVlAotvcyTbZxdbMTZjfRfVTfxlQUxIun-WB-M_N9I8R5LAexlMkVFhUOEpmkcSon8kD041ESR0M5HfXEsXMvUsrpWI6PRC-dJMNkNEz74uNR50zK5li7xqBXBSwVU-tetVeQcXAejYNWI9zbaKV9s-9XCr0mC3dMb_4ZdkwVLMmESjH8Wdhh0fy9Ruv2KiPrGfOv4VWnvCrDNcyKFm2ubQkzeFI5cQEPZMto3V3qMNxqo32AGxXIFhDLyy4JLKhhBzvi34ZXZJAhU8a4U3G466yrs-96Ii5u5-tsEdXNtlLFpmZdIYfNzy_Sf4FP-T10BA</recordid><startdate>20240119</startdate><enddate>20240119</enddate><creator>Xu, Yibo</creator><creator>Wang, Shirong</creator><creator>Liu, Hongli</creator><creator>Li, Xianggao</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-6127-1742</orcidid><orcidid>https://orcid.org/0000-0002-9942-9071</orcidid><orcidid>https://orcid.org/0000-0002-6396-8292</orcidid></search><sort><creationdate>20240119</creationdate><title>Microencapsulated Perovskite Crystals via In-Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing A Record Long-Term Stability Beyond 10,000 Hours for Perovskite Solar Cells</title><author>Xu, Yibo ; Wang, Shirong ; Liu, Hongli ; Li, Xianggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_382425433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yibo</creatorcontrib><creatorcontrib>Wang, Shirong</creatorcontrib><creatorcontrib>Liu, Hongli</creatorcontrib><creatorcontrib>Li, Xianggao</creatorcontrib><collection>PubMed</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yibo</au><au>Wang, Shirong</au><au>Liu, Hongli</au><au>Li, Xianggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microencapsulated Perovskite Crystals via In-Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing A Record Long-Term Stability Beyond 10,000 Hours for Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-19</date><risdate>2024</risdate><spage>e2313080</spage><pages>e2313080-</pages><eissn>1521-4095</eissn><abstract>Organic metal halide perovskite solar cells (PSCs) bearing both high efficiency and durability were predominantly challenged by inadequate crystallinity of perovskite. Herein, a polymer microencapsulation-expansion-contraction (MEC) strategy was proposed for the first time to optimize the crystallization behavior of perovskite, typically by adeptly harnessing the swelling and deswelling characteristics of poly(4-Acrylamidopyridine) (poly(4-AcM)) network on PbI surface. It can effectively retard the crystallization rate of perovskite, permitting meliorative crystallinity featured by increased grain size from 0.74 to 1.32 μm and reduced trap density from 1.12 × 10 to 2.56 × 10 cm . Moverover, profiting from the protection of poly(4-AcM) microencapsulation layer, the degradation of the perovskite was markedly suppressed. Resultant PSCs gained a robust power conversion effiency (PCE) of 24.04%. Typically, they maintained 91% of their initial PCE for 13,008 hours in a desiccated ambient environment and retained 92% PCE after storage for 4,000 hours with a relative humidity of 50±10%, which is the state-of-the-art long-term stability among the reported contributions. This article is protected by copyright. All rights reserved.</abstract><cop>Germany</cop><pmid>38242543</pmid><doi>10.1002/adma.202313080</doi><orcidid>https://orcid.org/0000-0001-6127-1742</orcidid><orcidid>https://orcid.org/0000-0002-9942-9071</orcidid><orcidid>https://orcid.org/0000-0002-6396-8292</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1521-4095
ispartof Advanced materials (Weinheim), 2024-01, p.e2313080
issn 1521-4095
language eng
recordid cdi_pubmed_primary_38242543
source Wiley Online Library Journals Frontfile Complete
title Microencapsulated Perovskite Crystals via In-Situ Permeation Growth from Polymer Microencapsulation-Expansion-Contraction Strategy: Advancing A Record Long-Term Stability Beyond 10,000 Hours for Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microencapsulated%20Perovskite%20Crystals%20via%20In-Situ%20Permeation%20Growth%20from%20Polymer%20Microencapsulation-Expansion-Contraction%20Strategy:%20Advancing%20A%20Record%20Long-Term%20Stability%20Beyond%2010,000%20Hours%20for%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Xu,%20Yibo&rft.date=2024-01-19&rft.spage=e2313080&rft.pages=e2313080-&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202313080&rft_dat=%3Cpubmed%3E38242543%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38242543&rfr_iscdi=true