ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions
A Synthetic Lethal (SL) interaction is a functional relationship between two genes or functional entities where the loss of either entity is viable but the loss of both is lethal. Such pairs can be used to develop targeted anticancer therapies with fewer side effects and reduced overtreatment. Howev...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-03, Vol.28 (3), p.1785-1796 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1796 |
---|---|
container_issue | 3 |
container_start_page | 1785 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Liany, Herty Jayagopal, Aishwarya Huang, Dachuan Lim, Jing Quan NBH, Nur Izzah Jeyasekharan, Anand Ong, Choon Kiat Rajan, Vaibhav |
description | A Synthetic Lethal (SL) interaction is a functional relationship between two genes or functional entities where the loss of either entity is viable but the loss of both is lethal. Such pairs can be used to develop targeted anticancer therapies with fewer side effects and reduced overtreatment. However, finding clinically relevant SL interactions remains challenging. Leveraging unified gene expression data of both disease-free and cancerous samples, we design a new technique based on statistical hypothesis testing, called ASTER, to identify SL pairs. We empirically find that the patterns of mutually exclusivity ASTER finds using genomic and transcriptomic data provides a strong signal of synthetic lethality. For large-scale multiple hypothesis testing, we develop an extension called ASTER++ that can utilize additional input gene features within the hypothesis testing framework. Our computational and functional experiments demonstrate the efficacy of ASTER in identifying SL pairs with potential therapeutic benefits. |
doi_str_mv | 10.1109/JBHI.2024.3354776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_38227408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10400780</ieee_id><sourcerecordid>2938027128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-baf2f3cd0430519331947d9fa124ac83e2cdac0e1c66c39b8b1f78ecd74b930e3</originalsourceid><addsrcrecordid>eNpdkFFPwjAQxxujEYJ8ABNjmvjiC3htx9b6hgQBg9EAPi9ddwsjY8O1mPDtLQLG2JfrXX73z-VHyDWDLmOgHl6expMuBx50hegFURSekSZnoexwDvL89GcqaJC2tSvwT_qRCi9JQ0jOowBkkyz688Vw9kj79BXdskqpq-h7jWluHB0UeZkbXRQ7OsMCv3Tp6HxXuiW63NCp53VBR1j-tJPSYa2Ny6vSXpGLTBcW28faIh_Pw8Vg3Jm-jSaD_rRjBHDXSXTGM2FSCAT0mBLCHxulKtOMB9pIgdyk2gAyE4ZGqEQmLIskmjQKEiUARYvcH3I3dfW5RevidW4NFoUusdramCvW64WKKfDo3T90VW3r0l_nKSGBR4xLT7EDZerK2hqzeFPna13vYgbx3nq8tx7vrcdH637n9pi8TdaY_m6cHHvg5gDkiPgnMACIJIhvblqEVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938027128</pqid></control><display><type>article</type><title>ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions</title><source>IEEE Electronic Library (IEL)</source><creator>Liany, Herty ; Jayagopal, Aishwarya ; Huang, Dachuan ; Lim, Jing Quan ; NBH, Nur Izzah ; Jeyasekharan, Anand ; Ong, Choon Kiat ; Rajan, Vaibhav</creator><creatorcontrib>Liany, Herty ; Jayagopal, Aishwarya ; Huang, Dachuan ; Lim, Jing Quan ; NBH, Nur Izzah ; Jeyasekharan, Anand ; Ong, Choon Kiat ; Rajan, Vaibhav</creatorcontrib><description>A Synthetic Lethal (SL) interaction is a functional relationship between two genes or functional entities where the loss of either entity is viable but the loss of both is lethal. Such pairs can be used to develop targeted anticancer therapies with fewer side effects and reduced overtreatment. However, finding clinically relevant SL interactions remains challenging. Leveraging unified gene expression data of both disease-free and cancerous samples, we design a new technique based on statistical hypothesis testing, called ASTER, to identify SL pairs. We empirically find that the patterns of mutually exclusivity ASTER finds using genomic and transcriptomic data provides a strong signal of synthetic lethality. For large-scale multiple hypothesis testing, we develop an extension called ASTER++ that can utilize additional input gene features within the hypothesis testing framework. Our computational and functional experiments demonstrate the efficacy of ASTER in identifying SL pairs with potential therapeutic benefits.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3354776</identifier><identifier>PMID: 38227408</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bioinformatics ; Cancer ; Drugs ; Gene expression ; Gene Expression Profiling ; Genetics ; Genomics ; Humans ; Hypotheses ; hypothesis testing ; Lethality ; Neoplasms - drug therapy ; Neoplasms - genetics ; Side effects ; Statistical analysis ; synthetic lethality ; targeted therapy ; Testing ; Transcriptomics ; unsupervised learning</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-03, Vol.28 (3), p.1785-1796</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3732-8707 ; 0000-0001-6402-4288 ; 0000-0002-6748-6864 ; 0000-0001-9816-6137 ; 0000-0001-6609-3287 ; 0000-0002-7518-4081 ; 0009-0005-1896-9906 ; 0000-0002-5658-0724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10400780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10400780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38227408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liany, Herty</creatorcontrib><creatorcontrib>Jayagopal, Aishwarya</creatorcontrib><creatorcontrib>Huang, Dachuan</creatorcontrib><creatorcontrib>Lim, Jing Quan</creatorcontrib><creatorcontrib>NBH, Nur Izzah</creatorcontrib><creatorcontrib>Jeyasekharan, Anand</creatorcontrib><creatorcontrib>Ong, Choon Kiat</creatorcontrib><creatorcontrib>Rajan, Vaibhav</creatorcontrib><title>ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>A Synthetic Lethal (SL) interaction is a functional relationship between two genes or functional entities where the loss of either entity is viable but the loss of both is lethal. Such pairs can be used to develop targeted anticancer therapies with fewer side effects and reduced overtreatment. However, finding clinically relevant SL interactions remains challenging. Leveraging unified gene expression data of both disease-free and cancerous samples, we design a new technique based on statistical hypothesis testing, called ASTER, to identify SL pairs. We empirically find that the patterns of mutually exclusivity ASTER finds using genomic and transcriptomic data provides a strong signal of synthetic lethality. For large-scale multiple hypothesis testing, we develop an extension called ASTER++ that can utilize additional input gene features within the hypothesis testing framework. Our computational and functional experiments demonstrate the efficacy of ASTER in identifying SL pairs with potential therapeutic benefits.</description><subject>Bioinformatics</subject><subject>Cancer</subject><subject>Drugs</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>hypothesis testing</subject><subject>Lethality</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Side effects</subject><subject>Statistical analysis</subject><subject>synthetic lethality</subject><subject>targeted therapy</subject><subject>Testing</subject><subject>Transcriptomics</subject><subject>unsupervised learning</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkFFPwjAQxxujEYJ8ABNjmvjiC3htx9b6hgQBg9EAPi9ddwsjY8O1mPDtLQLG2JfrXX73z-VHyDWDLmOgHl6expMuBx50hegFURSekSZnoexwDvL89GcqaJC2tSvwT_qRCi9JQ0jOowBkkyz688Vw9kj79BXdskqpq-h7jWluHB0UeZkbXRQ7OsMCv3Tp6HxXuiW63NCp53VBR1j-tJPSYa2Ny6vSXpGLTBcW28faIh_Pw8Vg3Jm-jSaD_rRjBHDXSXTGM2FSCAT0mBLCHxulKtOMB9pIgdyk2gAyE4ZGqEQmLIskmjQKEiUARYvcH3I3dfW5RevidW4NFoUusdramCvW64WKKfDo3T90VW3r0l_nKSGBR4xLT7EDZerK2hqzeFPna13vYgbx3nq8tx7vrcdH637n9pi8TdaY_m6cHHvg5gDkiPgnMACIJIhvblqEVQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Liany, Herty</creator><creator>Jayagopal, Aishwarya</creator><creator>Huang, Dachuan</creator><creator>Lim, Jing Quan</creator><creator>NBH, Nur Izzah</creator><creator>Jeyasekharan, Anand</creator><creator>Ong, Choon Kiat</creator><creator>Rajan, Vaibhav</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3732-8707</orcidid><orcidid>https://orcid.org/0000-0001-6402-4288</orcidid><orcidid>https://orcid.org/0000-0002-6748-6864</orcidid><orcidid>https://orcid.org/0000-0001-9816-6137</orcidid><orcidid>https://orcid.org/0000-0001-6609-3287</orcidid><orcidid>https://orcid.org/0000-0002-7518-4081</orcidid><orcidid>https://orcid.org/0009-0005-1896-9906</orcidid><orcidid>https://orcid.org/0000-0002-5658-0724</orcidid></search><sort><creationdate>20240301</creationdate><title>ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions</title><author>Liany, Herty ; Jayagopal, Aishwarya ; Huang, Dachuan ; Lim, Jing Quan ; NBH, Nur Izzah ; Jeyasekharan, Anand ; Ong, Choon Kiat ; Rajan, Vaibhav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-baf2f3cd0430519331947d9fa124ac83e2cdac0e1c66c39b8b1f78ecd74b930e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinformatics</topic><topic>Cancer</topic><topic>Drugs</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>hypothesis testing</topic><topic>Lethality</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Side effects</topic><topic>Statistical analysis</topic><topic>synthetic lethality</topic><topic>targeted therapy</topic><topic>Testing</topic><topic>Transcriptomics</topic><topic>unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liany, Herty</creatorcontrib><creatorcontrib>Jayagopal, Aishwarya</creatorcontrib><creatorcontrib>Huang, Dachuan</creatorcontrib><creatorcontrib>Lim, Jing Quan</creatorcontrib><creatorcontrib>NBH, Nur Izzah</creatorcontrib><creatorcontrib>Jeyasekharan, Anand</creatorcontrib><creatorcontrib>Ong, Choon Kiat</creatorcontrib><creatorcontrib>Rajan, Vaibhav</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liany, Herty</au><au>Jayagopal, Aishwarya</au><au>Huang, Dachuan</au><au>Lim, Jing Quan</au><au>NBH, Nur Izzah</au><au>Jeyasekharan, Anand</au><au>Ong, Choon Kiat</au><au>Rajan, Vaibhav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>28</volume><issue>3</issue><spage>1785</spage><epage>1796</epage><pages>1785-1796</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>A Synthetic Lethal (SL) interaction is a functional relationship between two genes or functional entities where the loss of either entity is viable but the loss of both is lethal. Such pairs can be used to develop targeted anticancer therapies with fewer side effects and reduced overtreatment. However, finding clinically relevant SL interactions remains challenging. Leveraging unified gene expression data of both disease-free and cancerous samples, we design a new technique based on statistical hypothesis testing, called ASTER, to identify SL pairs. We empirically find that the patterns of mutually exclusivity ASTER finds using genomic and transcriptomic data provides a strong signal of synthetic lethality. For large-scale multiple hypothesis testing, we develop an extension called ASTER++ that can utilize additional input gene features within the hypothesis testing framework. Our computational and functional experiments demonstrate the efficacy of ASTER in identifying SL pairs with potential therapeutic benefits.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38227408</pmid><doi>10.1109/JBHI.2024.3354776</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3732-8707</orcidid><orcidid>https://orcid.org/0000-0001-6402-4288</orcidid><orcidid>https://orcid.org/0000-0002-6748-6864</orcidid><orcidid>https://orcid.org/0000-0001-9816-6137</orcidid><orcidid>https://orcid.org/0000-0001-6609-3287</orcidid><orcidid>https://orcid.org/0000-0002-7518-4081</orcidid><orcidid>https://orcid.org/0009-0005-1896-9906</orcidid><orcidid>https://orcid.org/0000-0002-5658-0724</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-03, Vol.28 (3), p.1785-1796 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_38227408 |
source | IEEE Electronic Library (IEL) |
subjects | Bioinformatics Cancer Drugs Gene expression Gene Expression Profiling Genetics Genomics Humans Hypotheses hypothesis testing Lethality Neoplasms - drug therapy Neoplasms - genetics Side effects Statistical analysis synthetic lethality targeted therapy Testing Transcriptomics unsupervised learning |
title | ASTER: A Method to Predict Clinically Relevant Synthetic Lethal Genetic Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASTER:%20A%20Method%20to%20Predict%20Clinically%20Relevant%20Synthetic%20Lethal%20Genetic%20Interactions&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Liany,%20Herty&rft.date=2024-03-01&rft.volume=28&rft.issue=3&rft.spage=1785&rft.epage=1796&rft.pages=1785-1796&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3354776&rft_dat=%3Cproquest_RIE%3E2938027128%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938027128&rft_id=info:pmid/38227408&rft_ieee_id=10400780&rfr_iscdi=true |