Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment

Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8 T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8 T cell pool. CD8 T cells progressively remodel their transcriptome and su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.451
Hauptverfasser: Villa, Matteo, Sanin, David E, Apostolova, Petya, Corrado, Mauro, Kabat, Agnieszka M, Cristinzio, Carmine, Regina, Annamaria, Carrizo, Gustavo E, Rana, Nisha, Stanczak, Michal A, Baixauli, Francesc, Grzes, Katarzyna M, Cupovic, Jovana, Solagna, Francesca, Hackl, Alexandra, Globig, Anna-Maria, Hässler, Fabian, Puleston, Daniel J, Kelly, Beth, Cabezas-Wallscheid, Nina, Hasselblatt, Peter, Bengsch, Bertram, Zeiser, Robert, Sagar, Buescher, Joerg M, Pearce, Edward J, Pearce, Erika L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 451
container_title Nature communications
container_volume 15
creator Villa, Matteo
Sanin, David E
Apostolova, Petya
Corrado, Mauro
Kabat, Agnieszka M
Cristinzio, Carmine
Regina, Annamaria
Carrizo, Gustavo E
Rana, Nisha
Stanczak, Michal A
Baixauli, Francesc
Grzes, Katarzyna M
Cupovic, Jovana
Solagna, Francesca
Hackl, Alexandra
Globig, Anna-Maria
Hässler, Fabian
Puleston, Daniel J
Kelly, Beth
Cabezas-Wallscheid, Nina
Hasselblatt, Peter
Bengsch, Bertram
Zeiser, Robert
Sagar
Buescher, Joerg M
Pearce, Edward J
Pearce, Erika L
description Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8 T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8 T cell pool. CD8 T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8 T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E (PGE ), which drives mitochondrial depolarization in CD8 T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE sensing promotes CD8 T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE -autophagy-glutathione axis defines the metabolic adaptation of CD8 T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
doi_str_mv 10.1038/s41467-024-44689-2
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38200005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38200005</sourcerecordid><originalsourceid>FETCH-pubmed_primary_382000053</originalsourceid><addsrcrecordid>eNqFzs1OQjEQBeCGxAhRXoAFmReo9g-4rA3GpQv2ZLi3aEk7c9MOJr69YnTt2Zyc5FscpRbWPFjju8cWbFhvtHFBh7DuttpN1MyZYLXdOD9V89bO5jt-a7sQbtXUd-66VzOFr5Wb4FtGGhLBDhz0TFI5N5D3CCUKHjmnHnDAUVASE_AJ9tDHfDX8wxJJbJIIM5TUV470kSpTiST36uaEucX5b9-p5fNu__Six8uxxOEw1lSwfh7-Pvl_wRfnz0jX</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Villa, Matteo ; Sanin, David E ; Apostolova, Petya ; Corrado, Mauro ; Kabat, Agnieszka M ; Cristinzio, Carmine ; Regina, Annamaria ; Carrizo, Gustavo E ; Rana, Nisha ; Stanczak, Michal A ; Baixauli, Francesc ; Grzes, Katarzyna M ; Cupovic, Jovana ; Solagna, Francesca ; Hackl, Alexandra ; Globig, Anna-Maria ; Hässler, Fabian ; Puleston, Daniel J ; Kelly, Beth ; Cabezas-Wallscheid, Nina ; Hasselblatt, Peter ; Bengsch, Bertram ; Zeiser, Robert ; Sagar ; Buescher, Joerg M ; Pearce, Edward J ; Pearce, Erika L</creator><creatorcontrib>Villa, Matteo ; Sanin, David E ; Apostolova, Petya ; Corrado, Mauro ; Kabat, Agnieszka M ; Cristinzio, Carmine ; Regina, Annamaria ; Carrizo, Gustavo E ; Rana, Nisha ; Stanczak, Michal A ; Baixauli, Francesc ; Grzes, Katarzyna M ; Cupovic, Jovana ; Solagna, Francesca ; Hackl, Alexandra ; Globig, Anna-Maria ; Hässler, Fabian ; Puleston, Daniel J ; Kelly, Beth ; Cabezas-Wallscheid, Nina ; Hasselblatt, Peter ; Bengsch, Bertram ; Zeiser, Robert ; Sagar ; Buescher, Joerg M ; Pearce, Edward J ; Pearce, Erika L</creatorcontrib><description>Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8 T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8 T cell pool. CD8 T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8 T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E (PGE ), which drives mitochondrial depolarization in CD8 T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE sensing promotes CD8 T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE -autophagy-glutathione axis defines the metabolic adaptation of CD8 T cells to the intestinal microenvironment, to ultimately influence the T cell pool.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-44689-2</identifier><identifier>PMID: 38200005</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Autophagy ; CD8-Positive T-Lymphocytes ; Dinoprostone ; Genes, Mitochondrial ; Glutathione ; Humans ; Mice</subject><ispartof>Nature communications, 2024-01, Vol.15 (1), p.451</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5236-7459 ; 0000-0002-9676-2901 ; 0000-0001-6607-2291 ; 0000-0002-6547-0076 ; 0000-0003-2684-0596 ; 0000-0003-0188-7267 ; 0000-0003-2563-7254 ; 0000-0002-0038-9429 ; 0000-0001-6565-3393 ; 0000-0003-0870-0530 ; 0000-0001-5592-5439 ; 0000-0003-2041-2320 ; 0000-0002-0617-3274 ; 0000-0002-3856-5109 ; 0000-0003-2552-740X ; 0000-0002-8657-4704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38200005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villa, Matteo</creatorcontrib><creatorcontrib>Sanin, David E</creatorcontrib><creatorcontrib>Apostolova, Petya</creatorcontrib><creatorcontrib>Corrado, Mauro</creatorcontrib><creatorcontrib>Kabat, Agnieszka M</creatorcontrib><creatorcontrib>Cristinzio, Carmine</creatorcontrib><creatorcontrib>Regina, Annamaria</creatorcontrib><creatorcontrib>Carrizo, Gustavo E</creatorcontrib><creatorcontrib>Rana, Nisha</creatorcontrib><creatorcontrib>Stanczak, Michal A</creatorcontrib><creatorcontrib>Baixauli, Francesc</creatorcontrib><creatorcontrib>Grzes, Katarzyna M</creatorcontrib><creatorcontrib>Cupovic, Jovana</creatorcontrib><creatorcontrib>Solagna, Francesca</creatorcontrib><creatorcontrib>Hackl, Alexandra</creatorcontrib><creatorcontrib>Globig, Anna-Maria</creatorcontrib><creatorcontrib>Hässler, Fabian</creatorcontrib><creatorcontrib>Puleston, Daniel J</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Cabezas-Wallscheid, Nina</creatorcontrib><creatorcontrib>Hasselblatt, Peter</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Zeiser, Robert</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Buescher, Joerg M</creatorcontrib><creatorcontrib>Pearce, Edward J</creatorcontrib><creatorcontrib>Pearce, Erika L</creatorcontrib><title>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8 T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8 T cell pool. CD8 T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8 T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E (PGE ), which drives mitochondrial depolarization in CD8 T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE sensing promotes CD8 T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE -autophagy-glutathione axis defines the metabolic adaptation of CD8 T cells to the intestinal microenvironment, to ultimately influence the T cell pool.</description><subject>Animals</subject><subject>Autophagy</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>Dinoprostone</subject><subject>Genes, Mitochondrial</subject><subject>Glutathione</subject><subject>Humans</subject><subject>Mice</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFzs1OQjEQBeCGxAhRXoAFmReo9g-4rA3GpQv2ZLi3aEk7c9MOJr69YnTt2Zyc5FscpRbWPFjju8cWbFhvtHFBh7DuttpN1MyZYLXdOD9V89bO5jt-a7sQbtXUd-66VzOFr5Wb4FtGGhLBDhz0TFI5N5D3CCUKHjmnHnDAUVASE_AJ9tDHfDX8wxJJbJIIM5TUV470kSpTiST36uaEucX5b9-p5fNu__Six8uxxOEw1lSwfh7-Pvl_wRfnz0jX</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Villa, Matteo</creator><creator>Sanin, David E</creator><creator>Apostolova, Petya</creator><creator>Corrado, Mauro</creator><creator>Kabat, Agnieszka M</creator><creator>Cristinzio, Carmine</creator><creator>Regina, Annamaria</creator><creator>Carrizo, Gustavo E</creator><creator>Rana, Nisha</creator><creator>Stanczak, Michal A</creator><creator>Baixauli, Francesc</creator><creator>Grzes, Katarzyna M</creator><creator>Cupovic, Jovana</creator><creator>Solagna, Francesca</creator><creator>Hackl, Alexandra</creator><creator>Globig, Anna-Maria</creator><creator>Hässler, Fabian</creator><creator>Puleston, Daniel J</creator><creator>Kelly, Beth</creator><creator>Cabezas-Wallscheid, Nina</creator><creator>Hasselblatt, Peter</creator><creator>Bengsch, Bertram</creator><creator>Zeiser, Robert</creator><creator>Sagar</creator><creator>Buescher, Joerg M</creator><creator>Pearce, Edward J</creator><creator>Pearce, Erika L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-5236-7459</orcidid><orcidid>https://orcid.org/0000-0002-9676-2901</orcidid><orcidid>https://orcid.org/0000-0001-6607-2291</orcidid><orcidid>https://orcid.org/0000-0002-6547-0076</orcidid><orcidid>https://orcid.org/0000-0003-2684-0596</orcidid><orcidid>https://orcid.org/0000-0003-0188-7267</orcidid><orcidid>https://orcid.org/0000-0003-2563-7254</orcidid><orcidid>https://orcid.org/0000-0002-0038-9429</orcidid><orcidid>https://orcid.org/0000-0001-6565-3393</orcidid><orcidid>https://orcid.org/0000-0003-0870-0530</orcidid><orcidid>https://orcid.org/0000-0001-5592-5439</orcidid><orcidid>https://orcid.org/0000-0003-2041-2320</orcidid><orcidid>https://orcid.org/0000-0002-0617-3274</orcidid><orcidid>https://orcid.org/0000-0002-3856-5109</orcidid><orcidid>https://orcid.org/0000-0003-2552-740X</orcidid><orcidid>https://orcid.org/0000-0002-8657-4704</orcidid></search><sort><creationdate>20240111</creationdate><title>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</title><author>Villa, Matteo ; Sanin, David E ; Apostolova, Petya ; Corrado, Mauro ; Kabat, Agnieszka M ; Cristinzio, Carmine ; Regina, Annamaria ; Carrizo, Gustavo E ; Rana, Nisha ; Stanczak, Michal A ; Baixauli, Francesc ; Grzes, Katarzyna M ; Cupovic, Jovana ; Solagna, Francesca ; Hackl, Alexandra ; Globig, Anna-Maria ; Hässler, Fabian ; Puleston, Daniel J ; Kelly, Beth ; Cabezas-Wallscheid, Nina ; Hasselblatt, Peter ; Bengsch, Bertram ; Zeiser, Robert ; Sagar ; Buescher, Joerg M ; Pearce, Edward J ; Pearce, Erika L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_382000053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>Dinoprostone</topic><topic>Genes, Mitochondrial</topic><topic>Glutathione</topic><topic>Humans</topic><topic>Mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villa, Matteo</creatorcontrib><creatorcontrib>Sanin, David E</creatorcontrib><creatorcontrib>Apostolova, Petya</creatorcontrib><creatorcontrib>Corrado, Mauro</creatorcontrib><creatorcontrib>Kabat, Agnieszka M</creatorcontrib><creatorcontrib>Cristinzio, Carmine</creatorcontrib><creatorcontrib>Regina, Annamaria</creatorcontrib><creatorcontrib>Carrizo, Gustavo E</creatorcontrib><creatorcontrib>Rana, Nisha</creatorcontrib><creatorcontrib>Stanczak, Michal A</creatorcontrib><creatorcontrib>Baixauli, Francesc</creatorcontrib><creatorcontrib>Grzes, Katarzyna M</creatorcontrib><creatorcontrib>Cupovic, Jovana</creatorcontrib><creatorcontrib>Solagna, Francesca</creatorcontrib><creatorcontrib>Hackl, Alexandra</creatorcontrib><creatorcontrib>Globig, Anna-Maria</creatorcontrib><creatorcontrib>Hässler, Fabian</creatorcontrib><creatorcontrib>Puleston, Daniel J</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Cabezas-Wallscheid, Nina</creatorcontrib><creatorcontrib>Hasselblatt, Peter</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Zeiser, Robert</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Buescher, Joerg M</creatorcontrib><creatorcontrib>Pearce, Edward J</creatorcontrib><creatorcontrib>Pearce, Erika L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villa, Matteo</au><au>Sanin, David E</au><au>Apostolova, Petya</au><au>Corrado, Mauro</au><au>Kabat, Agnieszka M</au><au>Cristinzio, Carmine</au><au>Regina, Annamaria</au><au>Carrizo, Gustavo E</au><au>Rana, Nisha</au><au>Stanczak, Michal A</au><au>Baixauli, Francesc</au><au>Grzes, Katarzyna M</au><au>Cupovic, Jovana</au><au>Solagna, Francesca</au><au>Hackl, Alexandra</au><au>Globig, Anna-Maria</au><au>Hässler, Fabian</au><au>Puleston, Daniel J</au><au>Kelly, Beth</au><au>Cabezas-Wallscheid, Nina</au><au>Hasselblatt, Peter</au><au>Bengsch, Bertram</au><au>Zeiser, Robert</au><au>Sagar</au><au>Buescher, Joerg M</au><au>Pearce, Edward J</au><au>Pearce, Erika L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2024-01-11</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>451</spage><pages>451-</pages><eissn>2041-1723</eissn><abstract>Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8 T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8 T cell pool. CD8 T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8 T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E (PGE ), which drives mitochondrial depolarization in CD8 T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE sensing promotes CD8 T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE -autophagy-glutathione axis defines the metabolic adaptation of CD8 T cells to the intestinal microenvironment, to ultimately influence the T cell pool.</abstract><cop>England</cop><pmid>38200005</pmid><doi>10.1038/s41467-024-44689-2</doi><orcidid>https://orcid.org/0000-0002-5236-7459</orcidid><orcidid>https://orcid.org/0000-0002-9676-2901</orcidid><orcidid>https://orcid.org/0000-0001-6607-2291</orcidid><orcidid>https://orcid.org/0000-0002-6547-0076</orcidid><orcidid>https://orcid.org/0000-0003-2684-0596</orcidid><orcidid>https://orcid.org/0000-0003-0188-7267</orcidid><orcidid>https://orcid.org/0000-0003-2563-7254</orcidid><orcidid>https://orcid.org/0000-0002-0038-9429</orcidid><orcidid>https://orcid.org/0000-0001-6565-3393</orcidid><orcidid>https://orcid.org/0000-0003-0870-0530</orcidid><orcidid>https://orcid.org/0000-0001-5592-5439</orcidid><orcidid>https://orcid.org/0000-0003-2041-2320</orcidid><orcidid>https://orcid.org/0000-0002-0617-3274</orcidid><orcidid>https://orcid.org/0000-0002-3856-5109</orcidid><orcidid>https://orcid.org/0000-0003-2552-740X</orcidid><orcidid>https://orcid.org/0000-0002-8657-4704</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2024-01, Vol.15 (1), p.451
issn 2041-1723
language eng
recordid cdi_pubmed_primary_38200005
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Autophagy
CD8-Positive T-Lymphocytes
Dinoprostone
Genes, Mitochondrial
Glutathione
Humans
Mice
title Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostaglandin%20E%202%20controls%20the%20metabolic%20adaptation%20of%20T%20cells%20to%20the%20intestinal%20microenvironment&rft.jtitle=Nature%20communications&rft.au=Villa,%20Matteo&rft.date=2024-01-11&rft.volume=15&rft.issue=1&rft.spage=451&rft.pages=451-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-44689-2&rft_dat=%3Cpubmed%3E38200005%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38200005&rfr_iscdi=true