Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment
Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8 T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8 T cell pool. CD8 T cells progressively remodel their transcriptome and su...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-01, Vol.15 (1), p.451 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 451 |
container_title | Nature communications |
container_volume | 15 |
creator | Villa, Matteo Sanin, David E Apostolova, Petya Corrado, Mauro Kabat, Agnieszka M Cristinzio, Carmine Regina, Annamaria Carrizo, Gustavo E Rana, Nisha Stanczak, Michal A Baixauli, Francesc Grzes, Katarzyna M Cupovic, Jovana Solagna, Francesca Hackl, Alexandra Globig, Anna-Maria Hässler, Fabian Puleston, Daniel J Kelly, Beth Cabezas-Wallscheid, Nina Hasselblatt, Peter Bengsch, Bertram Zeiser, Robert Sagar Buescher, Joerg M Pearce, Edward J Pearce, Erika L |
description | Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8
T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8
T cell pool. CD8
T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8
T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E
(PGE
), which drives mitochondrial depolarization in CD8
T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE
sensing promotes CD8
T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE
-autophagy-glutathione axis defines the metabolic adaptation of CD8
T cells to the intestinal microenvironment, to ultimately influence the T cell pool. |
doi_str_mv | 10.1038/s41467-024-44689-2 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_38200005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38200005</sourcerecordid><originalsourceid>FETCH-pubmed_primary_382000053</originalsourceid><addsrcrecordid>eNqFzs1OQjEQBeCGxAhRXoAFmReo9g-4rA3GpQv2ZLi3aEk7c9MOJr69YnTt2Zyc5FscpRbWPFjju8cWbFhvtHFBh7DuttpN1MyZYLXdOD9V89bO5jt-a7sQbtXUd-66VzOFr5Wb4FtGGhLBDhz0TFI5N5D3CCUKHjmnHnDAUVASE_AJ9tDHfDX8wxJJbJIIM5TUV470kSpTiST36uaEucX5b9-p5fNu__Six8uxxOEw1lSwfh7-Pvl_wRfnz0jX</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Villa, Matteo ; Sanin, David E ; Apostolova, Petya ; Corrado, Mauro ; Kabat, Agnieszka M ; Cristinzio, Carmine ; Regina, Annamaria ; Carrizo, Gustavo E ; Rana, Nisha ; Stanczak, Michal A ; Baixauli, Francesc ; Grzes, Katarzyna M ; Cupovic, Jovana ; Solagna, Francesca ; Hackl, Alexandra ; Globig, Anna-Maria ; Hässler, Fabian ; Puleston, Daniel J ; Kelly, Beth ; Cabezas-Wallscheid, Nina ; Hasselblatt, Peter ; Bengsch, Bertram ; Zeiser, Robert ; Sagar ; Buescher, Joerg M ; Pearce, Edward J ; Pearce, Erika L</creator><creatorcontrib>Villa, Matteo ; Sanin, David E ; Apostolova, Petya ; Corrado, Mauro ; Kabat, Agnieszka M ; Cristinzio, Carmine ; Regina, Annamaria ; Carrizo, Gustavo E ; Rana, Nisha ; Stanczak, Michal A ; Baixauli, Francesc ; Grzes, Katarzyna M ; Cupovic, Jovana ; Solagna, Francesca ; Hackl, Alexandra ; Globig, Anna-Maria ; Hässler, Fabian ; Puleston, Daniel J ; Kelly, Beth ; Cabezas-Wallscheid, Nina ; Hasselblatt, Peter ; Bengsch, Bertram ; Zeiser, Robert ; Sagar ; Buescher, Joerg M ; Pearce, Edward J ; Pearce, Erika L</creatorcontrib><description>Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8
T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8
T cell pool. CD8
T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8
T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E
(PGE
), which drives mitochondrial depolarization in CD8
T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE
sensing promotes CD8
T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE
-autophagy-glutathione axis defines the metabolic adaptation of CD8
T cells to the intestinal microenvironment, to ultimately influence the T cell pool.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-44689-2</identifier><identifier>PMID: 38200005</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Autophagy ; CD8-Positive T-Lymphocytes ; Dinoprostone ; Genes, Mitochondrial ; Glutathione ; Humans ; Mice</subject><ispartof>Nature communications, 2024-01, Vol.15 (1), p.451</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5236-7459 ; 0000-0002-9676-2901 ; 0000-0001-6607-2291 ; 0000-0002-6547-0076 ; 0000-0003-2684-0596 ; 0000-0003-0188-7267 ; 0000-0003-2563-7254 ; 0000-0002-0038-9429 ; 0000-0001-6565-3393 ; 0000-0003-0870-0530 ; 0000-0001-5592-5439 ; 0000-0003-2041-2320 ; 0000-0002-0617-3274 ; 0000-0002-3856-5109 ; 0000-0003-2552-740X ; 0000-0002-8657-4704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38200005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villa, Matteo</creatorcontrib><creatorcontrib>Sanin, David E</creatorcontrib><creatorcontrib>Apostolova, Petya</creatorcontrib><creatorcontrib>Corrado, Mauro</creatorcontrib><creatorcontrib>Kabat, Agnieszka M</creatorcontrib><creatorcontrib>Cristinzio, Carmine</creatorcontrib><creatorcontrib>Regina, Annamaria</creatorcontrib><creatorcontrib>Carrizo, Gustavo E</creatorcontrib><creatorcontrib>Rana, Nisha</creatorcontrib><creatorcontrib>Stanczak, Michal A</creatorcontrib><creatorcontrib>Baixauli, Francesc</creatorcontrib><creatorcontrib>Grzes, Katarzyna M</creatorcontrib><creatorcontrib>Cupovic, Jovana</creatorcontrib><creatorcontrib>Solagna, Francesca</creatorcontrib><creatorcontrib>Hackl, Alexandra</creatorcontrib><creatorcontrib>Globig, Anna-Maria</creatorcontrib><creatorcontrib>Hässler, Fabian</creatorcontrib><creatorcontrib>Puleston, Daniel J</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Cabezas-Wallscheid, Nina</creatorcontrib><creatorcontrib>Hasselblatt, Peter</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Zeiser, Robert</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Buescher, Joerg M</creatorcontrib><creatorcontrib>Pearce, Edward J</creatorcontrib><creatorcontrib>Pearce, Erika L</creatorcontrib><title>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8
T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8
T cell pool. CD8
T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8
T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E
(PGE
), which drives mitochondrial depolarization in CD8
T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE
sensing promotes CD8
T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE
-autophagy-glutathione axis defines the metabolic adaptation of CD8
T cells to the intestinal microenvironment, to ultimately influence the T cell pool.</description><subject>Animals</subject><subject>Autophagy</subject><subject>CD8-Positive T-Lymphocytes</subject><subject>Dinoprostone</subject><subject>Genes, Mitochondrial</subject><subject>Glutathione</subject><subject>Humans</subject><subject>Mice</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFzs1OQjEQBeCGxAhRXoAFmReo9g-4rA3GpQv2ZLi3aEk7c9MOJr69YnTt2Zyc5FscpRbWPFjju8cWbFhvtHFBh7DuttpN1MyZYLXdOD9V89bO5jt-a7sQbtXUd-66VzOFr5Wb4FtGGhLBDhz0TFI5N5D3CCUKHjmnHnDAUVASE_AJ9tDHfDX8wxJJbJIIM5TUV470kSpTiST36uaEucX5b9-p5fNu__Six8uxxOEw1lSwfh7-Pvl_wRfnz0jX</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Villa, Matteo</creator><creator>Sanin, David E</creator><creator>Apostolova, Petya</creator><creator>Corrado, Mauro</creator><creator>Kabat, Agnieszka M</creator><creator>Cristinzio, Carmine</creator><creator>Regina, Annamaria</creator><creator>Carrizo, Gustavo E</creator><creator>Rana, Nisha</creator><creator>Stanczak, Michal A</creator><creator>Baixauli, Francesc</creator><creator>Grzes, Katarzyna M</creator><creator>Cupovic, Jovana</creator><creator>Solagna, Francesca</creator><creator>Hackl, Alexandra</creator><creator>Globig, Anna-Maria</creator><creator>Hässler, Fabian</creator><creator>Puleston, Daniel J</creator><creator>Kelly, Beth</creator><creator>Cabezas-Wallscheid, Nina</creator><creator>Hasselblatt, Peter</creator><creator>Bengsch, Bertram</creator><creator>Zeiser, Robert</creator><creator>Sagar</creator><creator>Buescher, Joerg M</creator><creator>Pearce, Edward J</creator><creator>Pearce, Erika L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-5236-7459</orcidid><orcidid>https://orcid.org/0000-0002-9676-2901</orcidid><orcidid>https://orcid.org/0000-0001-6607-2291</orcidid><orcidid>https://orcid.org/0000-0002-6547-0076</orcidid><orcidid>https://orcid.org/0000-0003-2684-0596</orcidid><orcidid>https://orcid.org/0000-0003-0188-7267</orcidid><orcidid>https://orcid.org/0000-0003-2563-7254</orcidid><orcidid>https://orcid.org/0000-0002-0038-9429</orcidid><orcidid>https://orcid.org/0000-0001-6565-3393</orcidid><orcidid>https://orcid.org/0000-0003-0870-0530</orcidid><orcidid>https://orcid.org/0000-0001-5592-5439</orcidid><orcidid>https://orcid.org/0000-0003-2041-2320</orcidid><orcidid>https://orcid.org/0000-0002-0617-3274</orcidid><orcidid>https://orcid.org/0000-0002-3856-5109</orcidid><orcidid>https://orcid.org/0000-0003-2552-740X</orcidid><orcidid>https://orcid.org/0000-0002-8657-4704</orcidid></search><sort><creationdate>20240111</creationdate><title>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</title><author>Villa, Matteo ; Sanin, David E ; Apostolova, Petya ; Corrado, Mauro ; Kabat, Agnieszka M ; Cristinzio, Carmine ; Regina, Annamaria ; Carrizo, Gustavo E ; Rana, Nisha ; Stanczak, Michal A ; Baixauli, Francesc ; Grzes, Katarzyna M ; Cupovic, Jovana ; Solagna, Francesca ; Hackl, Alexandra ; Globig, Anna-Maria ; Hässler, Fabian ; Puleston, Daniel J ; Kelly, Beth ; Cabezas-Wallscheid, Nina ; Hasselblatt, Peter ; Bengsch, Bertram ; Zeiser, Robert ; Sagar ; Buescher, Joerg M ; Pearce, Edward J ; Pearce, Erika L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_382000053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>CD8-Positive T-Lymphocytes</topic><topic>Dinoprostone</topic><topic>Genes, Mitochondrial</topic><topic>Glutathione</topic><topic>Humans</topic><topic>Mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villa, Matteo</creatorcontrib><creatorcontrib>Sanin, David E</creatorcontrib><creatorcontrib>Apostolova, Petya</creatorcontrib><creatorcontrib>Corrado, Mauro</creatorcontrib><creatorcontrib>Kabat, Agnieszka M</creatorcontrib><creatorcontrib>Cristinzio, Carmine</creatorcontrib><creatorcontrib>Regina, Annamaria</creatorcontrib><creatorcontrib>Carrizo, Gustavo E</creatorcontrib><creatorcontrib>Rana, Nisha</creatorcontrib><creatorcontrib>Stanczak, Michal A</creatorcontrib><creatorcontrib>Baixauli, Francesc</creatorcontrib><creatorcontrib>Grzes, Katarzyna M</creatorcontrib><creatorcontrib>Cupovic, Jovana</creatorcontrib><creatorcontrib>Solagna, Francesca</creatorcontrib><creatorcontrib>Hackl, Alexandra</creatorcontrib><creatorcontrib>Globig, Anna-Maria</creatorcontrib><creatorcontrib>Hässler, Fabian</creatorcontrib><creatorcontrib>Puleston, Daniel J</creatorcontrib><creatorcontrib>Kelly, Beth</creatorcontrib><creatorcontrib>Cabezas-Wallscheid, Nina</creatorcontrib><creatorcontrib>Hasselblatt, Peter</creatorcontrib><creatorcontrib>Bengsch, Bertram</creatorcontrib><creatorcontrib>Zeiser, Robert</creatorcontrib><creatorcontrib>Sagar</creatorcontrib><creatorcontrib>Buescher, Joerg M</creatorcontrib><creatorcontrib>Pearce, Edward J</creatorcontrib><creatorcontrib>Pearce, Erika L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villa, Matteo</au><au>Sanin, David E</au><au>Apostolova, Petya</au><au>Corrado, Mauro</au><au>Kabat, Agnieszka M</au><au>Cristinzio, Carmine</au><au>Regina, Annamaria</au><au>Carrizo, Gustavo E</au><au>Rana, Nisha</au><au>Stanczak, Michal A</au><au>Baixauli, Francesc</au><au>Grzes, Katarzyna M</au><au>Cupovic, Jovana</au><au>Solagna, Francesca</au><au>Hackl, Alexandra</au><au>Globig, Anna-Maria</au><au>Hässler, Fabian</au><au>Puleston, Daniel J</au><au>Kelly, Beth</au><au>Cabezas-Wallscheid, Nina</au><au>Hasselblatt, Peter</au><au>Bengsch, Bertram</au><au>Zeiser, Robert</au><au>Sagar</au><au>Buescher, Joerg M</au><au>Pearce, Edward J</au><au>Pearce, Erika L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2024-01-11</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>451</spage><pages>451-</pages><eissn>2041-1723</eissn><abstract>Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8
T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8
T cell pool. CD8
T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8
T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E
(PGE
), which drives mitochondrial depolarization in CD8
T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE
sensing promotes CD8
T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE
-autophagy-glutathione axis defines the metabolic adaptation of CD8
T cells to the intestinal microenvironment, to ultimately influence the T cell pool.</abstract><cop>England</cop><pmid>38200005</pmid><doi>10.1038/s41467-024-44689-2</doi><orcidid>https://orcid.org/0000-0002-5236-7459</orcidid><orcidid>https://orcid.org/0000-0002-9676-2901</orcidid><orcidid>https://orcid.org/0000-0001-6607-2291</orcidid><orcidid>https://orcid.org/0000-0002-6547-0076</orcidid><orcidid>https://orcid.org/0000-0003-2684-0596</orcidid><orcidid>https://orcid.org/0000-0003-0188-7267</orcidid><orcidid>https://orcid.org/0000-0003-2563-7254</orcidid><orcidid>https://orcid.org/0000-0002-0038-9429</orcidid><orcidid>https://orcid.org/0000-0001-6565-3393</orcidid><orcidid>https://orcid.org/0000-0003-0870-0530</orcidid><orcidid>https://orcid.org/0000-0001-5592-5439</orcidid><orcidid>https://orcid.org/0000-0003-2041-2320</orcidid><orcidid>https://orcid.org/0000-0002-0617-3274</orcidid><orcidid>https://orcid.org/0000-0002-3856-5109</orcidid><orcidid>https://orcid.org/0000-0003-2552-740X</orcidid><orcidid>https://orcid.org/0000-0002-8657-4704</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2041-1723 |
ispartof | Nature communications, 2024-01, Vol.15 (1), p.451 |
issn | 2041-1723 |
language | eng |
recordid | cdi_pubmed_primary_38200005 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Autophagy CD8-Positive T-Lymphocytes Dinoprostone Genes, Mitochondrial Glutathione Humans Mice |
title | Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostaglandin%20E%202%20controls%20the%20metabolic%20adaptation%20of%20T%20cells%20to%20the%20intestinal%20microenvironment&rft.jtitle=Nature%20communications&rft.au=Villa,%20Matteo&rft.date=2024-01-11&rft.volume=15&rft.issue=1&rft.spage=451&rft.pages=451-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-44689-2&rft_dat=%3Cpubmed%3E38200005%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38200005&rfr_iscdi=true |