Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements

This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.1-1
Hauptverfasser: Tian, Dingkui, Li, Wentao, Li, Jinke, Li, Feng, Chen, Ziqiang, He, Yong, Sun, Jianquan, Wu, Xinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Tian, Dingkui
Li, Wentao
Li, Jinke
Li, Feng
Chen, Ziqiang
He, Yong
Sun, Jianquan
Wu, Xinyu
description This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.
doi_str_mv 10.1109/TNSRE.2023.3348985
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38163311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379018</ieee_id><doaj_id>oai_doaj_org_article_efc2396bc97f492d8c520dc872c88cf0</doaj_id><sourcerecordid>2909086100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhSMEoj_wAgihSGy6yeCfxLGXqCptpQokWtaWfXMzeEjiwXYqePs6zVChrmxdfefI119RvKNkQylRn-6-3n6_2DDC-IbzWirZvCiOadPIijBKXi53Xlc1Z-SoOIlxRwhtRdO-Lo64pIJzSo8LuMWhr6wZzARu2pb4x8dfOGDyUxm89SmWHUa3nbArky97A25wySQsx3lIbj9gGfCnsevU5VQKxk1L1ejvccQpxTfFq94MEd8eztPix5eLu_Or6ubb5fX555sKasFSxS0gNVK0Ak0jOSqphMK6B2VR0hZAKZt3wa6xhguLyhJgHdKmZxYBBD8trtfezpud3gc3mvBXe-P048CHrTYhORhQYw-MK2FBtX2tWCehYaQD2TKQEnqSu87Wrn3wv2eMSY8uAg75n9DPUTNFFJGCkgX9-Azd-TlMedNM0abNapjKFFspCD7GgP3TAynRi079qFMvOvVBZw59OFTPdsTuKfLPXwber4BDxP8aeasIlfwBvk6maA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734829</pqid></control><display><type>article</type><title>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tian, Dingkui ; Li, Wentao ; Li, Jinke ; Li, Feng ; Chen, Ziqiang ; He, Yong ; Sun, Jianquan ; Wu, Xinyu</creator><creatorcontrib>Tian, Dingkui ; Li, Wentao ; Li, Jinke ; Li, Feng ; Chen, Ziqiang ; He, Yong ; Sun, Jianquan ; Wu, Xinyu</creatorcontrib><description>This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3348985</identifier><identifier>PMID: 38163311</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Balancing ; Biomimetic structure ; Biomimetics ; Controllers ; Data analysis ; Electromyography ; Exoskeleton ; Exoskeletons ; Hip ; Knee ; Legged locomotion ; Muscles ; Parameter modification ; Physical parameter-independent controller ; Physical properties ; Rehabilitation ; Self-balancing exoskeleton ; Structural design ; Structural engineering ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</citedby><cites>FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</cites><orcidid>0009-0005-8657-3305 ; 0000-0002-2974-1756 ; 0009-0000-6997-2586 ; 0000-0002-0776-7453 ; 0000-0001-6130-7821 ; 0009-0001-6888-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38163311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Dingkui</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Ziqiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Sun, Jianquan</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><title>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.</description><subject>Actuators</subject><subject>Balancing</subject><subject>Biomimetic structure</subject><subject>Biomimetics</subject><subject>Controllers</subject><subject>Data analysis</subject><subject>Electromyography</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Hip</subject><subject>Knee</subject><subject>Legged locomotion</subject><subject>Muscles</subject><subject>Parameter modification</subject><subject>Physical parameter-independent controller</subject><subject>Physical properties</subject><subject>Rehabilitation</subject><subject>Self-balancing exoskeleton</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1u1DAUhSMEoj_wAgihSGy6yeCfxLGXqCptpQokWtaWfXMzeEjiwXYqePs6zVChrmxdfefI119RvKNkQylRn-6-3n6_2DDC-IbzWirZvCiOadPIijBKXi53Xlc1Z-SoOIlxRwhtRdO-Lo64pIJzSo8LuMWhr6wZzARu2pb4x8dfOGDyUxm89SmWHUa3nbArky97A25wySQsx3lIbj9gGfCnsevU5VQKxk1L1ejvccQpxTfFq94MEd8eztPix5eLu_Or6ubb5fX555sKasFSxS0gNVK0Ak0jOSqphMK6B2VR0hZAKZt3wa6xhguLyhJgHdKmZxYBBD8trtfezpud3gc3mvBXe-P048CHrTYhORhQYw-MK2FBtX2tWCehYaQD2TKQEnqSu87Wrn3wv2eMSY8uAg75n9DPUTNFFJGCkgX9-Azd-TlMedNM0abNapjKFFspCD7GgP3TAynRi079qFMvOvVBZw59OFTPdsTuKfLPXwber4BDxP8aeasIlfwBvk6maA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tian, Dingkui</creator><creator>Li, Wentao</creator><creator>Li, Jinke</creator><creator>Li, Feng</creator><creator>Chen, Ziqiang</creator><creator>He, Yong</creator><creator>Sun, Jianquan</creator><creator>Wu, Xinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-8657-3305</orcidid><orcidid>https://orcid.org/0000-0002-2974-1756</orcidid><orcidid>https://orcid.org/0009-0000-6997-2586</orcidid><orcidid>https://orcid.org/0000-0002-0776-7453</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0009-0001-6888-2084</orcidid></search><sort><creationdate>20240101</creationdate><title>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</title><author>Tian, Dingkui ; Li, Wentao ; Li, Jinke ; Li, Feng ; Chen, Ziqiang ; He, Yong ; Sun, Jianquan ; Wu, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Balancing</topic><topic>Biomimetic structure</topic><topic>Biomimetics</topic><topic>Controllers</topic><topic>Data analysis</topic><topic>Electromyography</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Hip</topic><topic>Knee</topic><topic>Legged locomotion</topic><topic>Muscles</topic><topic>Parameter modification</topic><topic>Physical parameter-independent controller</topic><topic>Physical properties</topic><topic>Rehabilitation</topic><topic>Self-balancing exoskeleton</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Dingkui</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Ziqiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Sun, Jianquan</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Dingkui</au><au>Li, Wentao</au><au>Li, Jinke</au><au>Li, Feng</au><au>Chen, Ziqiang</au><au>He, Yong</au><au>Sun, Jianquan</au><au>Wu, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38163311</pmid><doi>10.1109/TNSRE.2023.3348985</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0005-8657-3305</orcidid><orcidid>https://orcid.org/0000-0002-2974-1756</orcidid><orcidid>https://orcid.org/0009-0000-6997-2586</orcidid><orcidid>https://orcid.org/0000-0002-0776-7453</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0009-0001-6888-2084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1
issn 1534-4320
1558-0210
language eng
recordid cdi_pubmed_primary_38163311
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Actuators
Balancing
Biomimetic structure
Biomimetics
Controllers
Data analysis
Electromyography
Exoskeleton
Exoskeletons
Hip
Knee
Legged locomotion
Muscles
Parameter modification
Physical parameter-independent controller
Physical properties
Rehabilitation
Self-balancing exoskeleton
Structural design
Structural engineering
Training
title Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-balancing%20exoskeleton%20robots%20designed%20to%20facilitate%20multiple%20rehabilitation%20training%20movements&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Tian,%20Dingkui&rft.date=2024-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3348985&rft_dat=%3Cproquest_pubme%3E2909086100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734829&rft_id=info:pmid/38163311&rft_ieee_id=10379018&rft_doaj_id=oai_doaj_org_article_efc2396bc97f492d8c520dc872c88cf0&rfr_iscdi=true