Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements
This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body stru...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Tian, Dingkui Li, Wentao Li, Jinke Li, Feng Chen, Ziqiang He, Yong Sun, Jianquan Wu, Xinyu |
description | This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises. |
doi_str_mv | 10.1109/TNSRE.2023.3348985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38163311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379018</ieee_id><doaj_id>oai_doaj_org_article_efc2396bc97f492d8c520dc872c88cf0</doaj_id><sourcerecordid>2909086100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhSMEoj_wAgihSGy6yeCfxLGXqCptpQokWtaWfXMzeEjiwXYqePs6zVChrmxdfefI119RvKNkQylRn-6-3n6_2DDC-IbzWirZvCiOadPIijBKXi53Xlc1Z-SoOIlxRwhtRdO-Lo64pIJzSo8LuMWhr6wZzARu2pb4x8dfOGDyUxm89SmWHUa3nbArky97A25wySQsx3lIbj9gGfCnsevU5VQKxk1L1ejvccQpxTfFq94MEd8eztPix5eLu_Or6ubb5fX555sKasFSxS0gNVK0Ak0jOSqphMK6B2VR0hZAKZt3wa6xhguLyhJgHdKmZxYBBD8trtfezpud3gc3mvBXe-P048CHrTYhORhQYw-MK2FBtX2tWCehYaQD2TKQEnqSu87Wrn3wv2eMSY8uAg75n9DPUTNFFJGCkgX9-Azd-TlMedNM0abNapjKFFspCD7GgP3TAynRi079qFMvOvVBZw59OFTPdsTuKfLPXwber4BDxP8aeasIlfwBvk6maA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734829</pqid></control><display><type>article</type><title>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tian, Dingkui ; Li, Wentao ; Li, Jinke ; Li, Feng ; Chen, Ziqiang ; He, Yong ; Sun, Jianquan ; Wu, Xinyu</creator><creatorcontrib>Tian, Dingkui ; Li, Wentao ; Li, Jinke ; Li, Feng ; Chen, Ziqiang ; He, Yong ; Sun, Jianquan ; Wu, Xinyu</creatorcontrib><description>This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3348985</identifier><identifier>PMID: 38163311</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Actuators ; Balancing ; Biomimetic structure ; Biomimetics ; Controllers ; Data analysis ; Electromyography ; Exoskeleton ; Exoskeletons ; Hip ; Knee ; Legged locomotion ; Muscles ; Parameter modification ; Physical parameter-independent controller ; Physical properties ; Rehabilitation ; Self-balancing exoskeleton ; Structural design ; Structural engineering ; Training</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</citedby><cites>FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</cites><orcidid>0009-0005-8657-3305 ; 0000-0002-2974-1756 ; 0009-0000-6997-2586 ; 0000-0002-0776-7453 ; 0000-0001-6130-7821 ; 0009-0001-6888-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38163311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Dingkui</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Ziqiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Sun, Jianquan</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><title>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.</description><subject>Actuators</subject><subject>Balancing</subject><subject>Biomimetic structure</subject><subject>Biomimetics</subject><subject>Controllers</subject><subject>Data analysis</subject><subject>Electromyography</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Hip</subject><subject>Knee</subject><subject>Legged locomotion</subject><subject>Muscles</subject><subject>Parameter modification</subject><subject>Physical parameter-independent controller</subject><subject>Physical properties</subject><subject>Rehabilitation</subject><subject>Self-balancing exoskeleton</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Training</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1u1DAUhSMEoj_wAgihSGy6yeCfxLGXqCptpQokWtaWfXMzeEjiwXYqePs6zVChrmxdfefI119RvKNkQylRn-6-3n6_2DDC-IbzWirZvCiOadPIijBKXi53Xlc1Z-SoOIlxRwhtRdO-Lo64pIJzSo8LuMWhr6wZzARu2pb4x8dfOGDyUxm89SmWHUa3nbArky97A25wySQsx3lIbj9gGfCnsevU5VQKxk1L1ejvccQpxTfFq94MEd8eztPix5eLu_Or6ubb5fX555sKasFSxS0gNVK0Ak0jOSqphMK6B2VR0hZAKZt3wa6xhguLyhJgHdKmZxYBBD8trtfezpud3gc3mvBXe-P048CHrTYhORhQYw-MK2FBtX2tWCehYaQD2TKQEnqSu87Wrn3wv2eMSY8uAg75n9DPUTNFFJGCkgX9-Azd-TlMedNM0abNapjKFFspCD7GgP3TAynRi079qFMvOvVBZw59OFTPdsTuKfLPXwber4BDxP8aeasIlfwBvk6maA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Tian, Dingkui</creator><creator>Li, Wentao</creator><creator>Li, Jinke</creator><creator>Li, Feng</creator><creator>Chen, Ziqiang</creator><creator>He, Yong</creator><creator>Sun, Jianquan</creator><creator>Wu, Xinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-8657-3305</orcidid><orcidid>https://orcid.org/0000-0002-2974-1756</orcidid><orcidid>https://orcid.org/0009-0000-6997-2586</orcidid><orcidid>https://orcid.org/0000-0002-0776-7453</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0009-0001-6888-2084</orcidid></search><sort><creationdate>20240101</creationdate><title>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</title><author>Tian, Dingkui ; Li, Wentao ; Li, Jinke ; Li, Feng ; Chen, Ziqiang ; He, Yong ; Sun, Jianquan ; Wu, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-3bce1a8676ea583e98969e4fc9be817cc99b320ed5ba36be9b0c2de15f2becc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Balancing</topic><topic>Biomimetic structure</topic><topic>Biomimetics</topic><topic>Controllers</topic><topic>Data analysis</topic><topic>Electromyography</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Hip</topic><topic>Knee</topic><topic>Legged locomotion</topic><topic>Muscles</topic><topic>Parameter modification</topic><topic>Physical parameter-independent controller</topic><topic>Physical properties</topic><topic>Rehabilitation</topic><topic>Self-balancing exoskeleton</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Dingkui</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Ziqiang</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Sun, Jianquan</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Dingkui</au><au>Li, Wentao</au><au>Li, Jinke</au><au>Li, Feng</au><au>Chen, Ziqiang</au><au>He, Yong</au><au>Sun, Jianquan</au><au>Wu, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>This study presents the biomimetic design of the structure and controller of AutoLEE-II, a self-balancing exoskeleton developed to assist patients in performing multiple rehabilitation movements without crutches or other supporting equipment. Its structural design is founded upon the human body structure, with an eliminated axis deviation and a raised CoM of the exoskeleton. The controller is a physical parameter-independent controller based on the CoM modification. Thus, the exoskeleton can adapt to patients with different physical parameters. Five subjects underwent exoskeleton-assisted rehabilitation training experiments, including squatting, tilting, and walking trainings. The results showed that the exoskeleton can assist patients in completing various rehabilitation exercises and help them maintain their balance during the rehabilitation training. This helpful role of the exoskeleton in rehabilitation training is analyzed through an electromyography (EMG) data analysis. The findings revealed that wearing the exoskeleton can reduce the activity of the lower limb muscles by approximately 20-30% when performing the same rehabilitation exercises.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38163311</pmid><doi>10.1109/TNSRE.2023.3348985</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0005-8657-3305</orcidid><orcidid>https://orcid.org/0000-0002-2974-1756</orcidid><orcidid>https://orcid.org/0009-0000-6997-2586</orcidid><orcidid>https://orcid.org/0000-0002-0776-7453</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0009-0001-6888-2084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_pubmed_primary_38163311 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Actuators Balancing Biomimetic structure Biomimetics Controllers Data analysis Electromyography Exoskeleton Exoskeletons Hip Knee Legged locomotion Muscles Parameter modification Physical parameter-independent controller Physical properties Rehabilitation Self-balancing exoskeleton Structural design Structural engineering Training |
title | Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-balancing%20exoskeleton%20robots%20designed%20to%20facilitate%20multiple%20rehabilitation%20training%20movements&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Tian,%20Dingkui&rft.date=2024-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3348985&rft_dat=%3Cproquest_pubme%3E2909086100%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734829&rft_id=info:pmid/38163311&rft_ieee_id=10379018&rft_doaj_id=oai_doaj_org_article_efc2396bc97f492d8c520dc872c88cf0&rfr_iscdi=true |