In Situ Formation of a LiBO 2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor

Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-01, Vol.16 (1), p.731-741
Hauptverfasser: Guo, Ziyin, Shi, Xiaotang, Cao, Longhao, Zhang, Jing, Zhang, Xiaosong, Yao, Jiang, Cheng, Ya-Jun, Xia, Yonggao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 1
container_start_page 731
container_title ACS applied materials & interfaces
container_volume 16
creator Guo, Ziyin
Shi, Xiaotang
Cao, Longhao
Zhang, Jing
Zhang, Xiaosong
Yao, Jiang
Cheng, Ya-Jun
Xia, Yonggao
description Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO layer possesses excellent (electro)chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.
doi_str_mv 10.1021/acsami.3c14342
format Article
fullrecord <record><control><sourceid>pubmed_swepu</sourceid><recordid>TN_cdi_pubmed_primary_38155536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38155536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1444-ebc2c7ffa1fa99d41bd3dae43a980d265b36416defebfe45c8b013a1be56d1ee3</originalsourceid><addsrcrecordid>eNo9kE1PGzEQhi1URCjttcdqfkA3rL-2m2MIUCKlgEjhas3aY-KKXUf2rlAO_He2Cs1pRqPnfaV5GPvGyykvBT9Hm7ENU2m5kkocsVM-U6qohRafDrtSE_Y5579lWUlR6hM2kTXXWsvqlL0tO1iHfoDrmFrsQ-wgekBYhYs7ELCI4617hhXuKAF2Dtbb0NEL3G8wE_iY4DYUD8FuYIH9JjqC39hTCviSwafYjlUXMQULcxtccdXbDTm4T2SHlGP6wo79SNLXj3nGHq-v_ixuitXdr-VivirGt8YXqLHC_vQeucfZzCneOOmQlMRZXTpR6UZWileOPDWelLZ1U3KJvCFdOU4kz9iPfW9-pe3QmG0KLaadiRjMZXiam5iezTAYLURVqxGf7nGbYs6J_CHAS_NPu9lrNx_ax8D3fWAsb8kd8P-e5TtrTH_a</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Formation of a LiBO 2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor</title><source>ACS Publications</source><creator>Guo, Ziyin ; Shi, Xiaotang ; Cao, Longhao ; Zhang, Jing ; Zhang, Xiaosong ; Yao, Jiang ; Cheng, Ya-Jun ; Xia, Yonggao</creator><creatorcontrib>Guo, Ziyin ; Shi, Xiaotang ; Cao, Longhao ; Zhang, Jing ; Zhang, Xiaosong ; Yao, Jiang ; Cheng, Ya-Jun ; Xia, Yonggao</creatorcontrib><description>Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO layer possesses excellent (electro)chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c14342</identifier><identifier>PMID: 38155536</identifier><language>eng</language><publisher>United States</publisher><subject>boricacid ; lithium-ion battery ; nickel-rich cathode ; spinel phase ; surface reconstruction</subject><ispartof>ACS applied materials &amp; interfaces, 2024-01, Vol.16 (1), p.731-741</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1444-ebc2c7ffa1fa99d41bd3dae43a980d265b36416defebfe45c8b013a1be56d1ee3</citedby><cites>FETCH-LOGICAL-c1444-ebc2c7ffa1fa99d41bd3dae43a980d265b36416defebfe45c8b013a1be56d1ee3</cites><orcidid>0000-0003-4901-1176 ; 0000-0002-0932-295X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2752,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38155536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-522684$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Ziyin</creatorcontrib><creatorcontrib>Shi, Xiaotang</creatorcontrib><creatorcontrib>Cao, Longhao</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zhang, Xiaosong</creatorcontrib><creatorcontrib>Yao, Jiang</creatorcontrib><creatorcontrib>Cheng, Ya-Jun</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><title>In Situ Formation of a LiBO 2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO layer possesses excellent (electro)chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.</description><subject>boricacid</subject><subject>lithium-ion battery</subject><subject>nickel-rich cathode</subject><subject>spinel phase</subject><subject>surface reconstruction</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PGzEQhi1URCjttcdqfkA3rL-2m2MIUCKlgEjhas3aY-KKXUf2rlAO_He2Cs1pRqPnfaV5GPvGyykvBT9Hm7ENU2m5kkocsVM-U6qohRafDrtSE_Y5579lWUlR6hM2kTXXWsvqlL0tO1iHfoDrmFrsQ-wgekBYhYs7ELCI4617hhXuKAF2Dtbb0NEL3G8wE_iY4DYUD8FuYIH9JjqC39hTCviSwafYjlUXMQULcxtccdXbDTm4T2SHlGP6wo79SNLXj3nGHq-v_ixuitXdr-VivirGt8YXqLHC_vQeucfZzCneOOmQlMRZXTpR6UZWileOPDWelLZ1U3KJvCFdOU4kz9iPfW9-pe3QmG0KLaadiRjMZXiam5iezTAYLURVqxGf7nGbYs6J_CHAS_NPu9lrNx_ax8D3fWAsb8kd8P-e5TtrTH_a</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Guo, Ziyin</creator><creator>Shi, Xiaotang</creator><creator>Cao, Longhao</creator><creator>Zhang, Jing</creator><creator>Zhang, Xiaosong</creator><creator>Yao, Jiang</creator><creator>Cheng, Ya-Jun</creator><creator>Xia, Yonggao</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0003-4901-1176</orcidid><orcidid>https://orcid.org/0000-0002-0932-295X</orcidid></search><sort><creationdate>20240110</creationdate><title>In Situ Formation of a LiBO 2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor</title><author>Guo, Ziyin ; Shi, Xiaotang ; Cao, Longhao ; Zhang, Jing ; Zhang, Xiaosong ; Yao, Jiang ; Cheng, Ya-Jun ; Xia, Yonggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1444-ebc2c7ffa1fa99d41bd3dae43a980d265b36416defebfe45c8b013a1be56d1ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>boricacid</topic><topic>lithium-ion battery</topic><topic>nickel-rich cathode</topic><topic>spinel phase</topic><topic>surface reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Ziyin</creatorcontrib><creatorcontrib>Shi, Xiaotang</creatorcontrib><creatorcontrib>Cao, Longhao</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zhang, Xiaosong</creatorcontrib><creatorcontrib>Yao, Jiang</creatorcontrib><creatorcontrib>Cheng, Ya-Jun</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Ziyin</au><au>Shi, Xiaotang</au><au>Cao, Longhao</au><au>Zhang, Jing</au><au>Zhang, Xiaosong</au><au>Yao, Jiang</au><au>Cheng, Ya-Jun</au><au>Xia, Yonggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Formation of a LiBO 2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>731</spage><epage>741</epage><pages>731-741</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO layer possesses excellent (electro)chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.</abstract><cop>United States</cop><pmid>38155536</pmid><doi>10.1021/acsami.3c14342</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4901-1176</orcidid><orcidid>https://orcid.org/0000-0002-0932-295X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-01, Vol.16 (1), p.731-741
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmed_primary_38155536
source ACS Publications
subjects boricacid
lithium-ion battery
nickel-rich cathode
spinel phase
surface reconstruction
title In Situ Formation of a LiBO 2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Formation%20of%20a%20LiBO%202%20Coating%20Layer%20and%20Spinel%20Phase%20for%20Ni-Rich%20Cathode%20Materials%20from%20a%20Boric%20Acid-Etched%20Precursor&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guo,%20Ziyin&rft.date=2024-01-10&rft.volume=16&rft.issue=1&rft.spage=731&rft.epage=741&rft.pages=731-741&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c14342&rft_dat=%3Cpubmed_swepu%3E38155536%3C/pubmed_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38155536&rfr_iscdi=true