Hermite-scan imaging for differentiating glioblastoma from normal brain: Simulations and ex vivo studies for applications in intra-operative tumor identificationa

Hermite-scan (H-scan) imaging is a tissue characterization technique based on the analysis of raw ultrasound radio frequency (RF) echoes. It matches the RF echoes to Gaussian-weighted Hermite polynomials of various orders to extract information related to scatterer diameter. It provides a color map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2023-12, Vol.154 (6), p.3833-3841
Hauptverfasser: Kakkar, Manik, Patil, Jagruti M., Trivedi, Vishwas, Yadav, Anushka, Saha, Ratan K., Rao, Shilpa, Vazhayil, Vikas, Pandya, Hardik J., Mahadevan, Anita, Shekhar, Himanshu, Mercado-Shekhar, Karla P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3841
container_issue 6
container_start_page 3833
container_title The Journal of the Acoustical Society of America
container_volume 154
creator Kakkar, Manik
Patil, Jagruti M.
Trivedi, Vishwas
Yadav, Anushka
Saha, Ratan K.
Rao, Shilpa
Vazhayil, Vikas
Pandya, Hardik J.
Mahadevan, Anita
Shekhar, Himanshu
Mercado-Shekhar, Karla P.
description Hermite-scan (H-scan) imaging is a tissue characterization technique based on the analysis of raw ultrasound radio frequency (RF) echoes. It matches the RF echoes to Gaussian-weighted Hermite polynomials of various orders to extract information related to scatterer diameter. It provides a color map of large and small scatterers in the red and blue H-scan image channels, respectively. H-scan has been previously reported for characterizing breast, pancreatic, and thyroid tumors. The present work evaluated H-scan imaging to differentiate glioblastoma tumors from normal brain tissue ex vivo. First, we conducted 2-D numerical simulations using the k-wave toolbox to assess the performance of parameters derived from H-scan images of acoustic scatterers (15–150 μm diameters) and concentrations (0.2%–1% w/v). We found that the parameter intensity-weighted percentage of red (IWPR) was sensitive to changes in scatterer diameters independent of concentration. Next, we assessed the feasibility of using the IWPR parameter for differentiating glioblastoma and normal brain tissues (n = 11 samples per group). The IWPR parameter estimates for normal tissue (44.1% ± 1.4%) were significantly different (p 
doi_str_mv 10.1121/10.0023952
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38109407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903859672</sourcerecordid><originalsourceid>FETCH-LOGICAL-p162t-1896a7dab76d53113e3d60ad6683a1658eb659644f40941716614a8f6258eaf43</originalsourceid><addsrcrecordid>eNo9kctKxTAQhoMoerxsfADJUpBqLm3auhPxBoILdV2mJ8kh0iQ1SQ_6Oj6pOVpd_czMxz_8MwgdU3JOKaMXWQlhvK3YFlrQipGiqVi5jRaEEFqUrRB7aD_Gt1xWDW930R5vKGlLUi_Q170K1iRVxCU4bCysjFth7QOWRmsVlEsG0qa3GozvB4jJW8A6eIudDxYG3Acw7hI_GzsNGfUuYnASqw-8NmuPY5qkUfHHE8ZxMMsZMnmfSwEKP6qQe2uF02QzZeRmq55BOEQ7GoaojmY9QK-3Ny_X98Xj093D9dVjMVLBUkGbVkAtoa-FrDilXHEpCEghGg5UVI3qRdWKstRlzk5rKgQtodGC5RHokh-g01_fMfj3ScXUWROXahjAKT_FjrWEN9mhZhk9mdGpt0p2Y8iXC5_d310zcPYLxKVJPzH-GUq6zdc2On-NfwPChIn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903859672</pqid></control><display><type>article</type><title>Hermite-scan imaging for differentiating glioblastoma from normal brain: Simulations and ex vivo studies for applications in intra-operative tumor identificationa</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Kakkar, Manik ; Patil, Jagruti M. ; Trivedi, Vishwas ; Yadav, Anushka ; Saha, Ratan K. ; Rao, Shilpa ; Vazhayil, Vikas ; Pandya, Hardik J. ; Mahadevan, Anita ; Shekhar, Himanshu ; Mercado-Shekhar, Karla P.</creator><creatorcontrib>Kakkar, Manik ; Patil, Jagruti M. ; Trivedi, Vishwas ; Yadav, Anushka ; Saha, Ratan K. ; Rao, Shilpa ; Vazhayil, Vikas ; Pandya, Hardik J. ; Mahadevan, Anita ; Shekhar, Himanshu ; Mercado-Shekhar, Karla P.</creatorcontrib><description>Hermite-scan (H-scan) imaging is a tissue characterization technique based on the analysis of raw ultrasound radio frequency (RF) echoes. It matches the RF echoes to Gaussian-weighted Hermite polynomials of various orders to extract information related to scatterer diameter. It provides a color map of large and small scatterers in the red and blue H-scan image channels, respectively. H-scan has been previously reported for characterizing breast, pancreatic, and thyroid tumors. The present work evaluated H-scan imaging to differentiate glioblastoma tumors from normal brain tissue ex vivo. First, we conducted 2-D numerical simulations using the k-wave toolbox to assess the performance of parameters derived from H-scan images of acoustic scatterers (15–150 μm diameters) and concentrations (0.2%–1% w/v). We found that the parameter intensity-weighted percentage of red (IWPR) was sensitive to changes in scatterer diameters independent of concentration. Next, we assessed the feasibility of using the IWPR parameter for differentiating glioblastoma and normal brain tissues (n = 11 samples per group). The IWPR parameter estimates for normal tissue (44.1% ± 1.4%) were significantly different (p &lt; 0.0001) from those for glioblastoma (36.2% ± 0.65%). These findings advance the development of H-scan imaging for potential use in differentiating glioblastoma tumors from normal brain tissue during resection surgery.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0023952</identifier><identifier>PMID: 38109407</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2023-12, Vol.154 (6), p.3833-3841</ispartof><rights>Acoustical Society of America</rights><rights>2023 Acoustical Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7274-6707 ; 0000-0003-1226-4196 ; 0000-0002-2533-5064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0023952$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38109407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kakkar, Manik</creatorcontrib><creatorcontrib>Patil, Jagruti M.</creatorcontrib><creatorcontrib>Trivedi, Vishwas</creatorcontrib><creatorcontrib>Yadav, Anushka</creatorcontrib><creatorcontrib>Saha, Ratan K.</creatorcontrib><creatorcontrib>Rao, Shilpa</creatorcontrib><creatorcontrib>Vazhayil, Vikas</creatorcontrib><creatorcontrib>Pandya, Hardik J.</creatorcontrib><creatorcontrib>Mahadevan, Anita</creatorcontrib><creatorcontrib>Shekhar, Himanshu</creatorcontrib><creatorcontrib>Mercado-Shekhar, Karla P.</creatorcontrib><title>Hermite-scan imaging for differentiating glioblastoma from normal brain: Simulations and ex vivo studies for applications in intra-operative tumor identificationa</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Hermite-scan (H-scan) imaging is a tissue characterization technique based on the analysis of raw ultrasound radio frequency (RF) echoes. It matches the RF echoes to Gaussian-weighted Hermite polynomials of various orders to extract information related to scatterer diameter. It provides a color map of large and small scatterers in the red and blue H-scan image channels, respectively. H-scan has been previously reported for characterizing breast, pancreatic, and thyroid tumors. The present work evaluated H-scan imaging to differentiate glioblastoma tumors from normal brain tissue ex vivo. First, we conducted 2-D numerical simulations using the k-wave toolbox to assess the performance of parameters derived from H-scan images of acoustic scatterers (15–150 μm diameters) and concentrations (0.2%–1% w/v). We found that the parameter intensity-weighted percentage of red (IWPR) was sensitive to changes in scatterer diameters independent of concentration. Next, we assessed the feasibility of using the IWPR parameter for differentiating glioblastoma and normal brain tissues (n = 11 samples per group). The IWPR parameter estimates for normal tissue (44.1% ± 1.4%) were significantly different (p &lt; 0.0001) from those for glioblastoma (36.2% ± 0.65%). These findings advance the development of H-scan imaging for potential use in differentiating glioblastoma tumors from normal brain tissue during resection surgery.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kctKxTAQhoMoerxsfADJUpBqLm3auhPxBoILdV2mJ8kh0iQ1SQ_6Oj6pOVpd_czMxz_8MwgdU3JOKaMXWQlhvK3YFlrQipGiqVi5jRaEEFqUrRB7aD_Gt1xWDW930R5vKGlLUi_Q170K1iRVxCU4bCysjFth7QOWRmsVlEsG0qa3GozvB4jJW8A6eIudDxYG3Acw7hI_GzsNGfUuYnASqw-8NmuPY5qkUfHHE8ZxMMsZMnmfSwEKP6qQe2uF02QzZeRmq55BOEQ7GoaojmY9QK-3Ny_X98Xj093D9dVjMVLBUkGbVkAtoa-FrDilXHEpCEghGg5UVI3qRdWKstRlzk5rKgQtodGC5RHokh-g01_fMfj3ScXUWROXahjAKT_FjrWEN9mhZhk9mdGpt0p2Y8iXC5_d310zcPYLxKVJPzH-GUq6zdc2On-NfwPChIn2</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Kakkar, Manik</creator><creator>Patil, Jagruti M.</creator><creator>Trivedi, Vishwas</creator><creator>Yadav, Anushka</creator><creator>Saha, Ratan K.</creator><creator>Rao, Shilpa</creator><creator>Vazhayil, Vikas</creator><creator>Pandya, Hardik J.</creator><creator>Mahadevan, Anita</creator><creator>Shekhar, Himanshu</creator><creator>Mercado-Shekhar, Karla P.</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7274-6707</orcidid><orcidid>https://orcid.org/0000-0003-1226-4196</orcidid><orcidid>https://orcid.org/0000-0002-2533-5064</orcidid></search><sort><creationdate>202312</creationdate><title>Hermite-scan imaging for differentiating glioblastoma from normal brain: Simulations and ex vivo studies for applications in intra-operative tumor identificationa</title><author>Kakkar, Manik ; Patil, Jagruti M. ; Trivedi, Vishwas ; Yadav, Anushka ; Saha, Ratan K. ; Rao, Shilpa ; Vazhayil, Vikas ; Pandya, Hardik J. ; Mahadevan, Anita ; Shekhar, Himanshu ; Mercado-Shekhar, Karla P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p162t-1896a7dab76d53113e3d60ad6683a1658eb659644f40941716614a8f6258eaf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakkar, Manik</creatorcontrib><creatorcontrib>Patil, Jagruti M.</creatorcontrib><creatorcontrib>Trivedi, Vishwas</creatorcontrib><creatorcontrib>Yadav, Anushka</creatorcontrib><creatorcontrib>Saha, Ratan K.</creatorcontrib><creatorcontrib>Rao, Shilpa</creatorcontrib><creatorcontrib>Vazhayil, Vikas</creatorcontrib><creatorcontrib>Pandya, Hardik J.</creatorcontrib><creatorcontrib>Mahadevan, Anita</creatorcontrib><creatorcontrib>Shekhar, Himanshu</creatorcontrib><creatorcontrib>Mercado-Shekhar, Karla P.</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakkar, Manik</au><au>Patil, Jagruti M.</au><au>Trivedi, Vishwas</au><au>Yadav, Anushka</au><au>Saha, Ratan K.</au><au>Rao, Shilpa</au><au>Vazhayil, Vikas</au><au>Pandya, Hardik J.</au><au>Mahadevan, Anita</au><au>Shekhar, Himanshu</au><au>Mercado-Shekhar, Karla P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hermite-scan imaging for differentiating glioblastoma from normal brain: Simulations and ex vivo studies for applications in intra-operative tumor identificationa</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2023-12</date><risdate>2023</risdate><volume>154</volume><issue>6</issue><spage>3833</spage><epage>3841</epage><pages>3833-3841</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Hermite-scan (H-scan) imaging is a tissue characterization technique based on the analysis of raw ultrasound radio frequency (RF) echoes. It matches the RF echoes to Gaussian-weighted Hermite polynomials of various orders to extract information related to scatterer diameter. It provides a color map of large and small scatterers in the red and blue H-scan image channels, respectively. H-scan has been previously reported for characterizing breast, pancreatic, and thyroid tumors. The present work evaluated H-scan imaging to differentiate glioblastoma tumors from normal brain tissue ex vivo. First, we conducted 2-D numerical simulations using the k-wave toolbox to assess the performance of parameters derived from H-scan images of acoustic scatterers (15–150 μm diameters) and concentrations (0.2%–1% w/v). We found that the parameter intensity-weighted percentage of red (IWPR) was sensitive to changes in scatterer diameters independent of concentration. Next, we assessed the feasibility of using the IWPR parameter for differentiating glioblastoma and normal brain tissues (n = 11 samples per group). The IWPR parameter estimates for normal tissue (44.1% ± 1.4%) were significantly different (p &lt; 0.0001) from those for glioblastoma (36.2% ± 0.65%). These findings advance the development of H-scan imaging for potential use in differentiating glioblastoma tumors from normal brain tissue during resection surgery.</abstract><cop>United States</cop><pmid>38109407</pmid><doi>10.1121/10.0023952</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7274-6707</orcidid><orcidid>https://orcid.org/0000-0003-1226-4196</orcidid><orcidid>https://orcid.org/0000-0002-2533-5064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2023-12, Vol.154 (6), p.3833-3841
issn 0001-4966
1520-8524
language eng
recordid cdi_pubmed_primary_38109407
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Hermite-scan imaging for differentiating glioblastoma from normal brain: Simulations and ex vivo studies for applications in intra-operative tumor identificationa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hermite-scan%20imaging%20for%20differentiating%20glioblastoma%20from%20normal%20brain:%20Simulations%20and%20ex%20vivo%20studies%20for%20applications%20in%20intra-operative%20tumor%20identificationa&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Kakkar,%20Manik&rft.date=2023-12&rft.volume=154&rft.issue=6&rft.spage=3833&rft.epage=3841&rft.pages=3833-3841&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0023952&rft_dat=%3Cproquest_pubme%3E2903859672%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903859672&rft_id=info:pmid/38109407&rfr_iscdi=true