The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols
Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings t...
Gespeichert in:
Veröffentlicht in: | Aerosol science and technology 2021-02, Vol.55 (2), p.142-153 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 2 |
container_start_page | 142 |
container_title | Aerosol science and technology |
container_volume | 55 |
creator | Dabisch, Paul Schuit, Michael Herzog, Artemas Beck, Katie Wood, Stewart Krause, Melissa Miller, David Weaver, Wade Freeburger, Denise Hooper, Idris Green, Brian Williams, Gregory Holland, Brian Bohannon, Jordan Wahl, Victoria Yolitz, Jason Hevey, Michael Ratnesar-Shumate, Shanna |
description | Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 40°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.
Copyright © 2020 American Association for Aerosol Research |
doi_str_mv | 10.1080/02786826.2020.1829536 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38077296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902952738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-34c093648009b74f55ab7cb69ec841c3f7858bd62f870ed28af6b30936df20163</originalsourceid><addsrcrecordid>eNp9kUuPFCEUhYnROO3oT9BU4mYWU-MFqoDaOen4SiYxcUa3hKLAZqSKloem_71UuseFC1cQ-M65cA5CLzFcYRDwBggXTBB2RYDUI0GGnrJHaIN7gltOhXiMNivTrtAZepbSPQBgTvBTdEYFcE4GtkE_7namcYv1xSzaNME22cx7E1Uu0Vw2uzK7yeXDZaOWqUluLl5lU3dl8e77LjdhafLRwejsflV09bi9_nLbbsO3ltSbRpkYUvDpOXpilU_mxWk9R1_fv7vbfmxvPn_4tL2-aXUPPLe00zBQ1gmAYeSd7Xs1cj2ywWjRYU0tF70YJ0as4GAmIpRlI10lkyWAGT1HF0fffQw_i0lZzi5p471aTChJkgFqWqSGVNHX_6D3ocSlvk6SjgtCBAVeqf5I6fqRFI2V--hmFQ8Sg1zbkA9tyLUNeWqj6l6d3Ms4m-mv6iH-Crw9AjW_EGf1O0Q_yawOPkQb1aJdkvT_M_4AdYCX0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478228307</pqid></control><display><type>article</type><title>The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Dabisch, Paul ; Schuit, Michael ; Herzog, Artemas ; Beck, Katie ; Wood, Stewart ; Krause, Melissa ; Miller, David ; Weaver, Wade ; Freeburger, Denise ; Hooper, Idris ; Green, Brian ; Williams, Gregory ; Holland, Brian ; Bohannon, Jordan ; Wahl, Victoria ; Yolitz, Jason ; Hevey, Michael ; Ratnesar-Shumate, Shanna</creator><creatorcontrib>Dabisch, Paul ; Schuit, Michael ; Herzog, Artemas ; Beck, Katie ; Wood, Stewart ; Krause, Melissa ; Miller, David ; Weaver, Wade ; Freeburger, Denise ; Hooper, Idris ; Green, Brian ; Williams, Gregory ; Holland, Brian ; Bohannon, Jordan ; Wahl, Victoria ; Yolitz, Jason ; Hevey, Michael ; Ratnesar-Shumate, Shanna</creatorcontrib><description>Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 40°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.
Copyright © 2020 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2020.1829536</identifier><identifier>PMID: 38077296</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Aerosol research ; Aerosols ; COVID-19 ; Environmental conditions ; Environmental parameters ; Humidity ; Pandemics ; Relative humidity ; Risk assessment ; Severe acute respiratory syndrome coronavirus 2 ; Simulation ; Sunlight ; Temperature range ; Tiina Reponen ; Viral diseases ; Viruses</subject><ispartof>Aerosol science and technology, 2021-02, Vol.55 (2), p.142-153</ispartof><rights>This manuscript has been authored by Battelle National Biodefense Institute, LLC under Contract No. HSHQDC-15-C-00064 with the U.S. Department of Homeland Security. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-34c093648009b74f55ab7cb69ec841c3f7858bd62f870ed28af6b30936df20163</citedby><cites>FETCH-LOGICAL-c507t-34c093648009b74f55ab7cb69ec841c3f7858bd62f870ed28af6b30936df20163</cites><orcidid>0000-0002-3181-6825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38077296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dabisch, Paul</creatorcontrib><creatorcontrib>Schuit, Michael</creatorcontrib><creatorcontrib>Herzog, Artemas</creatorcontrib><creatorcontrib>Beck, Katie</creatorcontrib><creatorcontrib>Wood, Stewart</creatorcontrib><creatorcontrib>Krause, Melissa</creatorcontrib><creatorcontrib>Miller, David</creatorcontrib><creatorcontrib>Weaver, Wade</creatorcontrib><creatorcontrib>Freeburger, Denise</creatorcontrib><creatorcontrib>Hooper, Idris</creatorcontrib><creatorcontrib>Green, Brian</creatorcontrib><creatorcontrib>Williams, Gregory</creatorcontrib><creatorcontrib>Holland, Brian</creatorcontrib><creatorcontrib>Bohannon, Jordan</creatorcontrib><creatorcontrib>Wahl, Victoria</creatorcontrib><creatorcontrib>Yolitz, Jason</creatorcontrib><creatorcontrib>Hevey, Michael</creatorcontrib><creatorcontrib>Ratnesar-Shumate, Shanna</creatorcontrib><title>The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols</title><title>Aerosol science and technology</title><addtitle>Aerosol Sci Technol</addtitle><description>Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 40°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.
Copyright © 2020 American Association for Aerosol Research</description><subject>Aerosol research</subject><subject>Aerosols</subject><subject>COVID-19</subject><subject>Environmental conditions</subject><subject>Environmental parameters</subject><subject>Humidity</subject><subject>Pandemics</subject><subject>Relative humidity</subject><subject>Risk assessment</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Simulation</subject><subject>Sunlight</subject><subject>Temperature range</subject><subject>Tiina Reponen</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUuPFCEUhYnROO3oT9BU4mYWU-MFqoDaOen4SiYxcUa3hKLAZqSKloem_71UuseFC1cQ-M65cA5CLzFcYRDwBggXTBB2RYDUI0GGnrJHaIN7gltOhXiMNivTrtAZepbSPQBgTvBTdEYFcE4GtkE_7namcYv1xSzaNME22cx7E1Uu0Vw2uzK7yeXDZaOWqUluLl5lU3dl8e77LjdhafLRwejsflV09bi9_nLbbsO3ltSbRpkYUvDpOXpilU_mxWk9R1_fv7vbfmxvPn_4tL2-aXUPPLe00zBQ1gmAYeSd7Xs1cj2ywWjRYU0tF70YJ0as4GAmIpRlI10lkyWAGT1HF0fffQw_i0lZzi5p471aTChJkgFqWqSGVNHX_6D3ocSlvk6SjgtCBAVeqf5I6fqRFI2V--hmFQ8Sg1zbkA9tyLUNeWqj6l6d3Ms4m-mv6iH-Crw9AjW_EGf1O0Q_yawOPkQb1aJdkvT_M_4AdYCX0A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Dabisch, Paul</creator><creator>Schuit, Michael</creator><creator>Herzog, Artemas</creator><creator>Beck, Katie</creator><creator>Wood, Stewart</creator><creator>Krause, Melissa</creator><creator>Miller, David</creator><creator>Weaver, Wade</creator><creator>Freeburger, Denise</creator><creator>Hooper, Idris</creator><creator>Green, Brian</creator><creator>Williams, Gregory</creator><creator>Holland, Brian</creator><creator>Bohannon, Jordan</creator><creator>Wahl, Victoria</creator><creator>Yolitz, Jason</creator><creator>Hevey, Michael</creator><creator>Ratnesar-Shumate, Shanna</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3181-6825</orcidid></search><sort><creationdate>20210201</creationdate><title>The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols</title><author>Dabisch, Paul ; Schuit, Michael ; Herzog, Artemas ; Beck, Katie ; Wood, Stewart ; Krause, Melissa ; Miller, David ; Weaver, Wade ; Freeburger, Denise ; Hooper, Idris ; Green, Brian ; Williams, Gregory ; Holland, Brian ; Bohannon, Jordan ; Wahl, Victoria ; Yolitz, Jason ; Hevey, Michael ; Ratnesar-Shumate, Shanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-34c093648009b74f55ab7cb69ec841c3f7858bd62f870ed28af6b30936df20163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosol research</topic><topic>Aerosols</topic><topic>COVID-19</topic><topic>Environmental conditions</topic><topic>Environmental parameters</topic><topic>Humidity</topic><topic>Pandemics</topic><topic>Relative humidity</topic><topic>Risk assessment</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Simulation</topic><topic>Sunlight</topic><topic>Temperature range</topic><topic>Tiina Reponen</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabisch, Paul</creatorcontrib><creatorcontrib>Schuit, Michael</creatorcontrib><creatorcontrib>Herzog, Artemas</creatorcontrib><creatorcontrib>Beck, Katie</creatorcontrib><creatorcontrib>Wood, Stewart</creatorcontrib><creatorcontrib>Krause, Melissa</creatorcontrib><creatorcontrib>Miller, David</creatorcontrib><creatorcontrib>Weaver, Wade</creatorcontrib><creatorcontrib>Freeburger, Denise</creatorcontrib><creatorcontrib>Hooper, Idris</creatorcontrib><creatorcontrib>Green, Brian</creatorcontrib><creatorcontrib>Williams, Gregory</creatorcontrib><creatorcontrib>Holland, Brian</creatorcontrib><creatorcontrib>Bohannon, Jordan</creatorcontrib><creatorcontrib>Wahl, Victoria</creatorcontrib><creatorcontrib>Yolitz, Jason</creatorcontrib><creatorcontrib>Hevey, Michael</creatorcontrib><creatorcontrib>Ratnesar-Shumate, Shanna</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabisch, Paul</au><au>Schuit, Michael</au><au>Herzog, Artemas</au><au>Beck, Katie</au><au>Wood, Stewart</au><au>Krause, Melissa</au><au>Miller, David</au><au>Weaver, Wade</au><au>Freeburger, Denise</au><au>Hooper, Idris</au><au>Green, Brian</au><au>Williams, Gregory</au><au>Holland, Brian</au><au>Bohannon, Jordan</au><au>Wahl, Victoria</au><au>Yolitz, Jason</au><au>Hevey, Michael</au><au>Ratnesar-Shumate, Shanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols</atitle><jtitle>Aerosol science and technology</jtitle><addtitle>Aerosol Sci Technol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>55</volume><issue>2</issue><spage>142</spage><epage>153</epage><pages>142-153</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><abstract>Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 40°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.
Copyright © 2020 American Association for Aerosol Research</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>38077296</pmid><doi>10.1080/02786826.2020.1829536</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3181-6825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6826 |
ispartof | Aerosol science and technology, 2021-02, Vol.55 (2), p.142-153 |
issn | 0278-6826 1521-7388 |
language | eng |
recordid | cdi_pubmed_primary_38077296 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Aerosol research Aerosols COVID-19 Environmental conditions Environmental parameters Humidity Pandemics Relative humidity Risk assessment Severe acute respiratory syndrome coronavirus 2 Simulation Sunlight Temperature range Tiina Reponen Viral diseases Viruses |
title | The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20temperature,%20humidity,%20and%20simulated%20sunlight%20on%20the%20infectivity%20of%20SARS-CoV-2%20in%20aerosols&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Dabisch,%20Paul&rft.date=2021-02-01&rft.volume=55&rft.issue=2&rft.spage=142&rft.epage=153&rft.pages=142-153&rft.issn=0278-6826&rft.eissn=1521-7388&rft_id=info:doi/10.1080/02786826.2020.1829536&rft_dat=%3Cproquest_pubme%3E2902952738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478228307&rft_id=info:pmid/38077296&rfr_iscdi=true |