A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure

The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-12, Vol.25 (48), p.3394-3313
Hauptverfasser: Wu, Di, Li, Yantang, Hua, Yang, Xu, Jingxiang, Zhang, Xiaolu, Miao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3313
container_issue 48
container_start_page 3394
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Wu, Di
Li, Yantang
Hua, Yang
Xu, Jingxiang
Zhang, Xiaolu
Miao, Yang
description The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains. The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.
doi_str_mv 10.1039/d3cp04370c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38038394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915957625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</originalsourceid><addsrcrecordid>eNpdkU1v1DAQQC1E1ZbSC3eQJS6lUortiePkWBb6IVUtQnCO_DHeTZXYwU4OPfDfm7LtInHySH7zNNIj5B1nZ5xB89mBHVkJitlX5JCXFRQNq8vXu1lVB-RNzveMMS457JMDqBnU0JSH5M85HTH5mAYdLFKH66SdnroY6BAd9jR6GropdT1SM0_adRiQptkYTPTk9suPT_SuSF1YZ7pI6ObBpbjG8CQdcOtB79FOmc7BLTubbr0pxoQ5zwnfkj2v-4zHz-8R-XXx7efqqri5u7xend8UFkBNhReIZc1q4TVvJONWAnIUkhlmEJUEI4XxANp4LwVXgqMCUzmpPQinFByRk613TPH3jHlqhy5b7HsdMM65FXVT1awsq2ZBP_6H3sc5heW6VjRcNlJVQi7U6ZayKeac0Ldj6gadHlrO2qco7VdYff8bZbXAH56VsxnQ7dCXCgvwfgukbHe__6rCI3GtkZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915957625</pqid></control><display><type>article</type><title>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Di ; Li, Yantang ; Hua, Yang ; Xu, Jingxiang ; Zhang, Xiaolu ; Miao, Yang</creator><creatorcontrib>Wu, Di ; Li, Yantang ; Hua, Yang ; Xu, Jingxiang ; Zhang, Xiaolu ; Miao, Yang</creatorcontrib><description>The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains. The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp04370c</identifier><identifier>PMID: 38038394</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>High pressure ; Hydrogen permeation ; Material properties ; Mathematical models ; Molecular chains ; Nitrile rubber ; O ring seals ; Performance degradation ; Permeation ; Pressure effects ; Uniaxial tensile strength ; Viscoelasticity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-12, Vol.25 (48), p.3394-3313</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</citedby><cites>FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</cites><orcidid>0000-0002-1484-9692 ; 0000-0002-4127-2980 ; 0000-0002-0322-1007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38038394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Li, Yantang</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Zhang, Xiaolu</creatorcontrib><creatorcontrib>Miao, Yang</creatorcontrib><title>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains. The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.</description><subject>High pressure</subject><subject>Hydrogen permeation</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Molecular chains</subject><subject>Nitrile rubber</subject><subject>O ring seals</subject><subject>Performance degradation</subject><subject>Permeation</subject><subject>Pressure effects</subject><subject>Uniaxial tensile strength</subject><subject>Viscoelasticity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQQC1E1ZbSC3eQJS6lUortiePkWBb6IVUtQnCO_DHeTZXYwU4OPfDfm7LtInHySH7zNNIj5B1nZ5xB89mBHVkJitlX5JCXFRQNq8vXu1lVB-RNzveMMS457JMDqBnU0JSH5M85HTH5mAYdLFKH66SdnroY6BAd9jR6GropdT1SM0_adRiQptkYTPTk9suPT_SuSF1YZ7pI6ObBpbjG8CQdcOtB79FOmc7BLTubbr0pxoQ5zwnfkj2v-4zHz-8R-XXx7efqqri5u7xend8UFkBNhReIZc1q4TVvJONWAnIUkhlmEJUEI4XxANp4LwVXgqMCUzmpPQinFByRk613TPH3jHlqhy5b7HsdMM65FXVT1awsq2ZBP_6H3sc5heW6VjRcNlJVQi7U6ZayKeac0Ldj6gadHlrO2qco7VdYff8bZbXAH56VsxnQ7dCXCgvwfgukbHe__6rCI3GtkZw</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Wu, Di</creator><creator>Li, Yantang</creator><creator>Hua, Yang</creator><creator>Xu, Jingxiang</creator><creator>Zhang, Xiaolu</creator><creator>Miao, Yang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1484-9692</orcidid><orcidid>https://orcid.org/0000-0002-4127-2980</orcidid><orcidid>https://orcid.org/0000-0002-0322-1007</orcidid></search><sort><creationdate>20231213</creationdate><title>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</title><author>Wu, Di ; Li, Yantang ; Hua, Yang ; Xu, Jingxiang ; Zhang, Xiaolu ; Miao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>High pressure</topic><topic>Hydrogen permeation</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Molecular chains</topic><topic>Nitrile rubber</topic><topic>O ring seals</topic><topic>Performance degradation</topic><topic>Permeation</topic><topic>Pressure effects</topic><topic>Uniaxial tensile strength</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Li, Yantang</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Zhang, Xiaolu</creatorcontrib><creatorcontrib>Miao, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Di</au><au>Li, Yantang</au><au>Hua, Yang</au><au>Xu, Jingxiang</au><au>Zhang, Xiaolu</au><au>Miao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-12-13</date><risdate>2023</risdate><volume>25</volume><issue>48</issue><spage>3394</spage><epage>3313</epage><pages>3394-3313</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains. The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38038394</pmid><doi>10.1039/d3cp04370c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1484-9692</orcidid><orcidid>https://orcid.org/0000-0002-4127-2980</orcidid><orcidid>https://orcid.org/0000-0002-0322-1007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-12, Vol.25 (48), p.3394-3313
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_38038394
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects High pressure
Hydrogen permeation
Material properties
Mathematical models
Molecular chains
Nitrile rubber
O ring seals
Performance degradation
Permeation
Pressure effects
Uniaxial tensile strength
Viscoelasticity
title A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20performance%20degradation%20model%20of%20nitrile%20butadiene%20rubber%20(NBR)%20O-rings%20for%20hydrogen%20permeation%20effects%20under%20high-pressure&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wu,%20Di&rft.date=2023-12-13&rft.volume=25&rft.issue=48&rft.spage=3394&rft.epage=3313&rft.pages=3394-3313&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp04370c&rft_dat=%3Cproquest_pubme%3E2915957625%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915957625&rft_id=info:pmid/38038394&rfr_iscdi=true