A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure
The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopi...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-12, Vol.25 (48), p.3394-3313 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3313 |
---|---|
container_issue | 48 |
container_start_page | 3394 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Wu, Di Li, Yantang Hua, Yang Xu, Jingxiang Zhang, Xiaolu Miao, Yang |
description | The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains.
The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. |
doi_str_mv | 10.1039/d3cp04370c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38038394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915957625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</originalsourceid><addsrcrecordid>eNpdkU1v1DAQQC1E1ZbSC3eQJS6lUortiePkWBb6IVUtQnCO_DHeTZXYwU4OPfDfm7LtInHySH7zNNIj5B1nZ5xB89mBHVkJitlX5JCXFRQNq8vXu1lVB-RNzveMMS457JMDqBnU0JSH5M85HTH5mAYdLFKH66SdnroY6BAd9jR6GropdT1SM0_adRiQptkYTPTk9suPT_SuSF1YZ7pI6ObBpbjG8CQdcOtB79FOmc7BLTubbr0pxoQ5zwnfkj2v-4zHz-8R-XXx7efqqri5u7xend8UFkBNhReIZc1q4TVvJONWAnIUkhlmEJUEI4XxANp4LwVXgqMCUzmpPQinFByRk613TPH3jHlqhy5b7HsdMM65FXVT1awsq2ZBP_6H3sc5heW6VjRcNlJVQi7U6ZayKeac0Ldj6gadHlrO2qco7VdYff8bZbXAH56VsxnQ7dCXCgvwfgukbHe__6rCI3GtkZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915957625</pqid></control><display><type>article</type><title>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Di ; Li, Yantang ; Hua, Yang ; Xu, Jingxiang ; Zhang, Xiaolu ; Miao, Yang</creator><creatorcontrib>Wu, Di ; Li, Yantang ; Hua, Yang ; Xu, Jingxiang ; Zhang, Xiaolu ; Miao, Yang</creatorcontrib><description>The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains.
The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp04370c</identifier><identifier>PMID: 38038394</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>High pressure ; Hydrogen permeation ; Material properties ; Mathematical models ; Molecular chains ; Nitrile rubber ; O ring seals ; Performance degradation ; Permeation ; Pressure effects ; Uniaxial tensile strength ; Viscoelasticity</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-12, Vol.25 (48), p.3394-3313</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</citedby><cites>FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</cites><orcidid>0000-0002-1484-9692 ; 0000-0002-4127-2980 ; 0000-0002-0322-1007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38038394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Li, Yantang</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Zhang, Xiaolu</creatorcontrib><creatorcontrib>Miao, Yang</creatorcontrib><title>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains.
The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.</description><subject>High pressure</subject><subject>Hydrogen permeation</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Molecular chains</subject><subject>Nitrile rubber</subject><subject>O ring seals</subject><subject>Performance degradation</subject><subject>Permeation</subject><subject>Pressure effects</subject><subject>Uniaxial tensile strength</subject><subject>Viscoelasticity</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQQC1E1ZbSC3eQJS6lUortiePkWBb6IVUtQnCO_DHeTZXYwU4OPfDfm7LtInHySH7zNNIj5B1nZ5xB89mBHVkJitlX5JCXFRQNq8vXu1lVB-RNzveMMS457JMDqBnU0JSH5M85HTH5mAYdLFKH66SdnroY6BAd9jR6GropdT1SM0_adRiQptkYTPTk9suPT_SuSF1YZ7pI6ObBpbjG8CQdcOtB79FOmc7BLTubbr0pxoQ5zwnfkj2v-4zHz-8R-XXx7efqqri5u7xend8UFkBNhReIZc1q4TVvJONWAnIUkhlmEJUEI4XxANp4LwVXgqMCUzmpPQinFByRk613TPH3jHlqhy5b7HsdMM65FXVT1awsq2ZBP_6H3sc5heW6VjRcNlJVQi7U6ZayKeac0Ldj6gadHlrO2qco7VdYff8bZbXAH56VsxnQ7dCXCgvwfgukbHe__6rCI3GtkZw</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Wu, Di</creator><creator>Li, Yantang</creator><creator>Hua, Yang</creator><creator>Xu, Jingxiang</creator><creator>Zhang, Xiaolu</creator><creator>Miao, Yang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1484-9692</orcidid><orcidid>https://orcid.org/0000-0002-4127-2980</orcidid><orcidid>https://orcid.org/0000-0002-0322-1007</orcidid></search><sort><creationdate>20231213</creationdate><title>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</title><author>Wu, Di ; Li, Yantang ; Hua, Yang ; Xu, Jingxiang ; Zhang, Xiaolu ; Miao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f2ee48082fa19501c53e1e250b0bee753b52bf33abff521721e73b6d5af32d773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>High pressure</topic><topic>Hydrogen permeation</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Molecular chains</topic><topic>Nitrile rubber</topic><topic>O ring seals</topic><topic>Performance degradation</topic><topic>Permeation</topic><topic>Pressure effects</topic><topic>Uniaxial tensile strength</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Li, Yantang</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Zhang, Xiaolu</creatorcontrib><creatorcontrib>Miao, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Di</au><au>Li, Yantang</au><au>Hua, Yang</au><au>Xu, Jingxiang</au><au>Zhang, Xiaolu</au><au>Miao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-12-13</date><risdate>2023</risdate><volume>25</volume><issue>48</issue><spage>3394</spage><epage>3313</epage><pages>3394-3313</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals. Nonetheless, a comprehensive and compelling mathematical model that can describe molecular chains' material properties and macroscopic material properties simultaneously for O-rings under high-pressure conditions is yet to be established. In this paper, we propose a degradation model based on viscoelasticity and molecular chain statistics for hydrogen permeation. The proposed model aims to establish the relationship between the material molecular chains and macroscopic material properties, with a primary focus on accurately recognizing the performance degradation process of rubber sealing rings. We verify the model's reliability through uniaxial tensile strength experiments and high-pressure hydrogen immersion experiments, respectively. Predictions of the model exhibit favorable conformity with the experimental data concerning the above phenomena. Furthermore, we derive the number of molecular chains and maximum strain of the degradation process. Based on the similarity of the degradation process's descent, it is plausible to speculate that NBR properties' degradation can be characterized by the average number of molecular chains.
The integration of molecular chain changes on a microscopic scale to achieve macroscopic performance is crucial in degradation processes concerning O-ring seals.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38038394</pmid><doi>10.1039/d3cp04370c</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1484-9692</orcidid><orcidid>https://orcid.org/0000-0002-4127-2980</orcidid><orcidid>https://orcid.org/0000-0002-0322-1007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-12, Vol.25 (48), p.3394-3313 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_38038394 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | High pressure Hydrogen permeation Material properties Mathematical models Molecular chains Nitrile rubber O ring seals Performance degradation Permeation Pressure effects Uniaxial tensile strength Viscoelasticity |
title | A performance degradation model of nitrile butadiene rubber (NBR) O-rings for hydrogen permeation effects under high-pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20performance%20degradation%20model%20of%20nitrile%20butadiene%20rubber%20(NBR)%20O-rings%20for%20hydrogen%20permeation%20effects%20under%20high-pressure&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wu,%20Di&rft.date=2023-12-13&rft.volume=25&rft.issue=48&rft.spage=3394&rft.epage=3313&rft.pages=3394-3313&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp04370c&rft_dat=%3Cproquest_pubme%3E2915957625%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915957625&rft_id=info:pmid/38038394&rfr_iscdi=true |