Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction

Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-03, Vol.36 (11), p.e2307661
Hauptverfasser: Gui, Renjie, Cheng, Han, Wang, Minghao, Tai, Xiaolin, Zhang, Huijuan, Liu, Congyan, Cao, Xuemin, Chen, Chen, Ge, Min, Wang, Huijuan, Zheng, Xusheng, Chu, Wangsheng, Lin, Yue, Xie, Yi, Wu, Changzheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e2307661
container_title Advanced materials (Weinheim)
container_volume 36
creator Gui, Renjie
Cheng, Han
Wang, Minghao
Tai, Xiaolin
Zhang, Huijuan
Liu, Congyan
Cao, Xuemin
Chen, Chen
Ge, Min
Wang, Huijuan
Zheng, Xusheng
Chu, Wangsheng
Lin, Yue
Xie, Yi
Wu, Changzheng
description Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt Ga (Pm m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt Ga (Pm m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mg and 5.36 mA cm , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.
doi_str_mv 10.1002/adma.202307661
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_37994613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37994613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1073-428f8a0ad03da26bc86d45f21c0b6548b06748db86131abf9711a21d507bb2543</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZYn8AynjZ-wlz1KpUlEL68iO7Sooj8pJEfl70ha6mtHM3CPNQeiWwJQA0HvjKjOlQBmkUpIzNCaCkoSDFudoDJqJREuuRuiqbb8AQEuQl2jEUq25JGyM4rqvKt_FPpnXbpd7h1d-sytNVzQ1bgJ-7_C6i6ao8bOPxfewD7Gp9mOGZwbP687HIW_KsshxaCJ-bJq2K-oNXv70G18PuAF7oK28OTTX6CKYsvU3f3WCPl9fPp7eksVyNn96WCQ5gZQlnKqgDBgHzBkqba6k4yJQkoOVgisLMuXKWTX8QYwNOiXEUOIEpNZSwdkETY_cPDZtG33ItrGoTOwzAtleXraXl53kDYG7Y2C7s5V3p_N_W-wXC8RrEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gui, Renjie ; Cheng, Han ; Wang, Minghao ; Tai, Xiaolin ; Zhang, Huijuan ; Liu, Congyan ; Cao, Xuemin ; Chen, Chen ; Ge, Min ; Wang, Huijuan ; Zheng, Xusheng ; Chu, Wangsheng ; Lin, Yue ; Xie, Yi ; Wu, Changzheng</creator><creatorcontrib>Gui, Renjie ; Cheng, Han ; Wang, Minghao ; Tai, Xiaolin ; Zhang, Huijuan ; Liu, Congyan ; Cao, Xuemin ; Chen, Chen ; Ge, Min ; Wang, Huijuan ; Zheng, Xusheng ; Chu, Wangsheng ; Lin, Yue ; Xie, Yi ; Wu, Changzheng</creatorcontrib><description>Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt Ga (Pm m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt Ga (Pm m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mg and 5.36 mA cm , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202307661</identifier><identifier>PMID: 37994613</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2307661</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1073-428f8a0ad03da26bc86d45f21c0b6548b06748db86131abf9711a21d507bb2543</citedby><cites>FETCH-LOGICAL-c1073-428f8a0ad03da26bc86d45f21c0b6548b06748db86131abf9711a21d507bb2543</cites><orcidid>0000-0002-4416-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37994613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gui, Renjie</creatorcontrib><creatorcontrib>Cheng, Han</creatorcontrib><creatorcontrib>Wang, Minghao</creatorcontrib><creatorcontrib>Tai, Xiaolin</creatorcontrib><creatorcontrib>Zhang, Huijuan</creatorcontrib><creatorcontrib>Liu, Congyan</creatorcontrib><creatorcontrib>Cao, Xuemin</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Ge, Min</creatorcontrib><creatorcontrib>Wang, Huijuan</creatorcontrib><creatorcontrib>Zheng, Xusheng</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Wu, Changzheng</creatorcontrib><title>Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt Ga (Pm m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt Ga (Pm m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mg and 5.36 mA cm , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.</description><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWwZYn8AynjZ-wlz1KpUlEL68iO7Sooj8pJEfl70ha6mtHM3CPNQeiWwJQA0HvjKjOlQBmkUpIzNCaCkoSDFudoDJqJREuuRuiqbb8AQEuQl2jEUq25JGyM4rqvKt_FPpnXbpd7h1d-sytNVzQ1bgJ-7_C6i6ao8bOPxfewD7Gp9mOGZwbP687HIW_KsshxaCJ-bJq2K-oNXv70G18PuAF7oK28OTTX6CKYsvU3f3WCPl9fPp7eksVyNn96WCQ5gZQlnKqgDBgHzBkqba6k4yJQkoOVgisLMuXKWTX8QYwNOiXEUOIEpNZSwdkETY_cPDZtG33ItrGoTOwzAtleXraXl53kDYG7Y2C7s5V3p_N_W-wXC8RrEA</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Gui, Renjie</creator><creator>Cheng, Han</creator><creator>Wang, Minghao</creator><creator>Tai, Xiaolin</creator><creator>Zhang, Huijuan</creator><creator>Liu, Congyan</creator><creator>Cao, Xuemin</creator><creator>Chen, Chen</creator><creator>Ge, Min</creator><creator>Wang, Huijuan</creator><creator>Zheng, Xusheng</creator><creator>Chu, Wangsheng</creator><creator>Lin, Yue</creator><creator>Xie, Yi</creator><creator>Wu, Changzheng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4416-6358</orcidid></search><sort><creationdate>202403</creationdate><title>Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction</title><author>Gui, Renjie ; Cheng, Han ; Wang, Minghao ; Tai, Xiaolin ; Zhang, Huijuan ; Liu, Congyan ; Cao, Xuemin ; Chen, Chen ; Ge, Min ; Wang, Huijuan ; Zheng, Xusheng ; Chu, Wangsheng ; Lin, Yue ; Xie, Yi ; Wu, Changzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1073-428f8a0ad03da26bc86d45f21c0b6548b06748db86131abf9711a21d507bb2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Renjie</creatorcontrib><creatorcontrib>Cheng, Han</creatorcontrib><creatorcontrib>Wang, Minghao</creatorcontrib><creatorcontrib>Tai, Xiaolin</creatorcontrib><creatorcontrib>Zhang, Huijuan</creatorcontrib><creatorcontrib>Liu, Congyan</creatorcontrib><creatorcontrib>Cao, Xuemin</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Ge, Min</creatorcontrib><creatorcontrib>Wang, Huijuan</creatorcontrib><creatorcontrib>Zheng, Xusheng</creatorcontrib><creatorcontrib>Chu, Wangsheng</creatorcontrib><creatorcontrib>Lin, Yue</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Wu, Changzheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Renjie</au><au>Cheng, Han</au><au>Wang, Minghao</au><au>Tai, Xiaolin</au><au>Zhang, Huijuan</au><au>Liu, Congyan</au><au>Cao, Xuemin</au><au>Chen, Chen</au><au>Ge, Min</au><au>Wang, Huijuan</au><au>Zheng, Xusheng</au><au>Chu, Wangsheng</au><au>Lin, Yue</au><au>Xie, Yi</au><au>Wu, Changzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>e2307661</spage><pages>e2307661-</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Pt-based fuel cell catalysts with excellent activity and stability for proton-exchange membrane fuel cells (PEMFCs) have been developed through strain regulation in recent years. Herein, this work demonstrates that symmetry-induced strain regulation of Pt surface of PtGa intermetallic compounds can greatly enhance the catalytic performance of the oxygen reduction reaction (ORR). With the strain environment varies derived from the lattice mismatch of analogous PtGa core but different symmetry, the Pt surface of the PtGa alloy and the Pt Ga (Pm m) precisely realize 0.58% and 2.7% compressive strain compared to the Pt Ga (P4/mmm). Experimental and theoretical results reveal that when the compressive stress of the Pt lattice increases, the desorption process of O* intermediates becomes accelerated, which is conducive to oxygen reduction. The Pt Ga (Pm m) with high symmetry and compressive Pt surface exhibit the highest mass and specific activities of 2.18 A mg and 5.36 mA cm , respectively, which are more than one order of magnitude higher than those of commercial Pt/C catalysts. This work demonstrates that material symmetry can be used to precisely modulate Pt surface stress to enhance the ORR, as well as provide a distinct platform to investigate the relationship between Pt compressibility and catalytic activity.</abstract><cop>Germany</cop><pmid>37994613</pmid><doi>10.1002/adma.202307661</doi><orcidid>https://orcid.org/0000-0002-4416-6358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2307661
issn 0935-9648
1521-4095
language eng
recordid cdi_pubmed_primary_37994613
source Wiley Online Library Journals Frontfile Complete
title Symmetry-Induced Regulation of Pt Strain Derived from Pt 3 Ga Intermetallic for Boosting Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry-Induced%20Regulation%20of%20Pt%20Strain%20Derived%20from%20Pt%203%20Ga%20Intermetallic%20for%20Boosting%20Oxygen%20Reduction%20Reaction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gui,%20Renjie&rft.date=2024-03&rft.volume=36&rft.issue=11&rft.spage=e2307661&rft.pages=e2307661-&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202307661&rft_dat=%3Cpubmed_cross%3E37994613%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37994613&rfr_iscdi=true