An allosteric redox switch involved in oxygen protection in a CO 2 reductase
Metal-dependent formate dehydrogenases reduce CO with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2024-01, Vol.20 (1), p.111 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 111 |
container_title | Nature chemical biology |
container_volume | 20 |
creator | Oliveira, Ana Rita Mota, Cristiano Vilela-Alves, Guilherme Manuel, Rita Rebelo Pedrosa, Neide Fourmond, Vincent Klymanska, Kateryna Léger, Christophe Guigliarelli, Bruno Romão, Maria João Cardoso Pereira, Inês A |
description | Metal-dependent formate dehydrogenases reduce CO
with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O
exposure. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_37985883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37985883</sourcerecordid><originalsourceid>FETCH-pubmed_primary_379858833</originalsourceid><addsrcrecordid>eNpjYuA0NDU10jUxMbPkYOAqLs4yMDA2MzO0YGfgMDa3tDC1sDDmZPBxzFNIzMnJLy5JLcpMVihKTcmvUCguzyxJzlDIzCvLzylLTQEyFPIrKtNT8xQKivJLUpNLMvPzQIKJCs7-CkYgTaXJJYnFqTwMrGmJOcWpvFCam0HOzTXE2UO3oDQpNzUlvqAoMzexqDIeZr0xQQUArJg6sQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An allosteric redox switch involved in oxygen protection in a CO 2 reductase</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Oliveira, Ana Rita ; Mota, Cristiano ; Vilela-Alves, Guilherme ; Manuel, Rita Rebelo ; Pedrosa, Neide ; Fourmond, Vincent ; Klymanska, Kateryna ; Léger, Christophe ; Guigliarelli, Bruno ; Romão, Maria João ; Cardoso Pereira, Inês A</creator><creatorcontrib>Oliveira, Ana Rita ; Mota, Cristiano ; Vilela-Alves, Guilherme ; Manuel, Rita Rebelo ; Pedrosa, Neide ; Fourmond, Vincent ; Klymanska, Kateryna ; Léger, Christophe ; Guigliarelli, Bruno ; Romão, Maria João ; Cardoso Pereira, Inês A</creatorcontrib><description>Metal-dependent formate dehydrogenases reduce CO
with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O
exposure.</description><identifier>EISSN: 1552-4469</identifier><identifier>PMID: 37985883</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature chemical biology, 2024-01, Vol.20 (1), p.111</ispartof><rights>2023. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9837-6214 ; 0000-0003-3807-1421 ; 0000-0003-0003-9637 ; 0000-0001-7828-4152 ; 0000-0002-3004-0543 ; 0000-0003-3283-4520 ; 0000-0002-8871-6059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37985883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliveira, Ana Rita</creatorcontrib><creatorcontrib>Mota, Cristiano</creatorcontrib><creatorcontrib>Vilela-Alves, Guilherme</creatorcontrib><creatorcontrib>Manuel, Rita Rebelo</creatorcontrib><creatorcontrib>Pedrosa, Neide</creatorcontrib><creatorcontrib>Fourmond, Vincent</creatorcontrib><creatorcontrib>Klymanska, Kateryna</creatorcontrib><creatorcontrib>Léger, Christophe</creatorcontrib><creatorcontrib>Guigliarelli, Bruno</creatorcontrib><creatorcontrib>Romão, Maria João</creatorcontrib><creatorcontrib>Cardoso Pereira, Inês A</creatorcontrib><title>An allosteric redox switch involved in oxygen protection in a CO 2 reductase</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><description>Metal-dependent formate dehydrogenases reduce CO
with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O
exposure.</description><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDU10jUxMbPkYOAqLs4yMDA2MzO0YGfgMDa3tDC1sDDmZPBxzFNIzMnJLy5JLcpMVihKTcmvUCguzyxJzlDIzCvLzylLTQEyFPIrKtNT8xQKivJLUpNLMvPzQIKJCs7-CkYgTaXJJYnFqTwMrGmJOcWpvFCam0HOzTXE2UO3oDQpNzUlvqAoMzexqDIeZr0xQQUArJg6sQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Oliveira, Ana Rita</creator><creator>Mota, Cristiano</creator><creator>Vilela-Alves, Guilherme</creator><creator>Manuel, Rita Rebelo</creator><creator>Pedrosa, Neide</creator><creator>Fourmond, Vincent</creator><creator>Klymanska, Kateryna</creator><creator>Léger, Christophe</creator><creator>Guigliarelli, Bruno</creator><creator>Romão, Maria João</creator><creator>Cardoso Pereira, Inês A</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-9837-6214</orcidid><orcidid>https://orcid.org/0000-0003-3807-1421</orcidid><orcidid>https://orcid.org/0000-0003-0003-9637</orcidid><orcidid>https://orcid.org/0000-0001-7828-4152</orcidid><orcidid>https://orcid.org/0000-0002-3004-0543</orcidid><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0002-8871-6059</orcidid></search><sort><creationdate>202401</creationdate><title>An allosteric redox switch involved in oxygen protection in a CO 2 reductase</title><author>Oliveira, Ana Rita ; Mota, Cristiano ; Vilela-Alves, Guilherme ; Manuel, Rita Rebelo ; Pedrosa, Neide ; Fourmond, Vincent ; Klymanska, Kateryna ; Léger, Christophe ; Guigliarelli, Bruno ; Romão, Maria João ; Cardoso Pereira, Inês A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_379858833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Ana Rita</creatorcontrib><creatorcontrib>Mota, Cristiano</creatorcontrib><creatorcontrib>Vilela-Alves, Guilherme</creatorcontrib><creatorcontrib>Manuel, Rita Rebelo</creatorcontrib><creatorcontrib>Pedrosa, Neide</creatorcontrib><creatorcontrib>Fourmond, Vincent</creatorcontrib><creatorcontrib>Klymanska, Kateryna</creatorcontrib><creatorcontrib>Léger, Christophe</creatorcontrib><creatorcontrib>Guigliarelli, Bruno</creatorcontrib><creatorcontrib>Romão, Maria João</creatorcontrib><creatorcontrib>Cardoso Pereira, Inês A</creatorcontrib><collection>PubMed</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Ana Rita</au><au>Mota, Cristiano</au><au>Vilela-Alves, Guilherme</au><au>Manuel, Rita Rebelo</au><au>Pedrosa, Neide</au><au>Fourmond, Vincent</au><au>Klymanska, Kateryna</au><au>Léger, Christophe</au><au>Guigliarelli, Bruno</au><au>Romão, Maria João</au><au>Cardoso Pereira, Inês A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An allosteric redox switch involved in oxygen protection in a CO 2 reductase</atitle><jtitle>Nature chemical biology</jtitle><addtitle>Nat Chem Biol</addtitle><date>2024-01</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>111</spage><pages>111-</pages><eissn>1552-4469</eissn><abstract>Metal-dependent formate dehydrogenases reduce CO
with high efficiency and selectivity, but are usually very oxygen sensitive. An exception is Desulfovibrio vulgaris W/Sec-FdhAB, which can be handled aerobically, but the basis for this oxygen tolerance was unknown. Here we show that FdhAB activity is controlled by a redox switch based on an allosteric disulfide bond. When this bond is closed, the enzyme is in an oxygen-tolerant resting state presenting almost no catalytic activity and very low formate affinity. Opening this bond triggers large conformational changes that propagate to the active site, resulting in high activity and high formate affinity, but also higher oxygen sensitivity. We present the structure of activated FdhAB and show that activity loss is associated with partial loss of the metal sulfido ligand. The redox switch mechanism is reversible in vivo and prevents enzyme reduction by physiological formate levels, conferring a fitness advantage during O
exposure.</abstract><cop>United States</cop><pmid>37985883</pmid><orcidid>https://orcid.org/0000-0001-9837-6214</orcidid><orcidid>https://orcid.org/0000-0003-3807-1421</orcidid><orcidid>https://orcid.org/0000-0003-0003-9637</orcidid><orcidid>https://orcid.org/0000-0001-7828-4152</orcidid><orcidid>https://orcid.org/0000-0002-3004-0543</orcidid><orcidid>https://orcid.org/0000-0003-3283-4520</orcidid><orcidid>https://orcid.org/0000-0002-8871-6059</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1552-4469 |
ispartof | Nature chemical biology, 2024-01, Vol.20 (1), p.111 |
issn | 1552-4469 |
language | eng |
recordid | cdi_pubmed_primary_37985883 |
source | Nature; Alma/SFX Local Collection |
title | An allosteric redox switch involved in oxygen protection in a CO 2 reductase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20allosteric%20redox%20switch%20involved%20in%20oxygen%20protection%20in%20a%20CO%202%20reductase&rft.jtitle=Nature%20chemical%20biology&rft.au=Oliveira,%20Ana%20Rita&rft.date=2024-01&rft.volume=20&rft.issue=1&rft.spage=111&rft.pages=111-&rft.eissn=1552-4469&rft_id=info:doi/&rft_dat=%3Cpubmed%3E37985883%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37985883&rfr_iscdi=true |