3', 4'-dihydroxyflavone ameliorates paclitaxel model of peripheral neuropathy in mice by modulating K ATP channel, adenosine (A 3 ) and GABA A (α 2 subunit) receptors
Paclitaxel is a widely used cancer chemotherapeutic agent for many solid tumors; but peripheral neuropathy is a major limitation for its clinical use. Studies have demonstrated the usefulness of flavone derivatives in chemotherapy induced peripheral neuropathy. The present study evaluates the anti-n...
Gespeichert in:
Veröffentlicht in: | Bioinformation 2023, Vol.19 (6), p.754 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Paclitaxel is a widely used cancer chemotherapeutic agent for many solid tumors; but peripheral neuropathy is a major limitation for its clinical use. Studies have demonstrated the usefulness of flavone derivatives in chemotherapy induced peripheral neuropathy. The present study evaluates the anti-neuropathic effect of 3', 4'-dihydroxyflavone on paclitaxel-induced peripheral neuropathy and the underlying mechanisms. Paclitaxel was administered to mice in a single dose of 10 mg/kg, i.p.The neuropathic behavioural parameters such as mechanical allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later. The test compound 3', 4'-dihydroxyflavone (50,100 or 200 mg/kg,s.c) was administered 30 min prior to the assessment of behavioral parameters. The possible mechanisms involving K
channels, adenosine and GABA
receptors were explored by employing suitable interacting drugs. Molecular docking studies to predict the binding interactions of 3', 4'-dihydroxyflavone at the above targets were also carried out. The test compound 3', 4'-dihydroxyflavoneexhibited a significant reduction in paw withdrawal response score in both mechanical and cold allodynia and also increased the tail flick response time in thermal hyperalgesia due to paclitaxel-induced neuropathy. The anti-neuropathic effect of 3', 4'-dihydroxyflavonewas significantly reversed by pre-treatment with glibenclamide, caffeine or bicuculline revealing the involvement of K
channels, adenosine and GABA
receptors respectively. Furthermore, the molecular docking studies indicated a favourable binding affinity and good H-bond interaction of 3', 4'-dihydroxyflavone at these targets. The findings of the present study suggests that, 3', 4'-dihydroxyflavone has anti-neuropathic effect against paclitaxel-induced peripheral neuropathy through mechanisms that involve K
channels, adenosine (A
) and GABA
(α
subunit) receptors. |
---|---|
ISSN: | 0973-2063 |