An Anatomy- and Topology-Preserving Framework for Coronary Artery Segmentation

Coronary artery segmentation is critical for coronary artery disease diagnosis but challenging due to its tortuous course with numerous small branches and inter-subject variations. Most existing studies ignore important anatomical information and vascular topologies, leading to less desirable segmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-02, Vol.43 (2), p.1-1
Hauptverfasser: Zhang, Xiao, Sun, Kaicong, Wu, Dijia, Xiong, Xiaosong, Liu, Jiameng, Yao, Linlin, Li, Shufang, Wang, Yining, Feng, Jun, Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 2
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 43
creator Zhang, Xiao
Sun, Kaicong
Wu, Dijia
Xiong, Xiaosong
Liu, Jiameng
Yao, Linlin
Li, Shufang
Wang, Yining
Feng, Jun
Shen, Dinggang
description Coronary artery segmentation is critical for coronary artery disease diagnosis but challenging due to its tortuous course with numerous small branches and inter-subject variations. Most existing studies ignore important anatomical information and vascular topologies, leading to less desirable segmentation performance that usually cannot satisfy clinical demands. To deal with these challenges, in this paper we propose an anatomy-and topology-preserving two-stage framework for coronary artery segmentation. The proposed framework consists of an anatomical dependency encoding (ADE) module and a hierarchical topology learning (HTL) module for coarse-to-fine segmentation, respectively. Specifically, the ADE module segments four heart chambers and aorta, and thus five distance field maps are obtained to encode distance between chamber surfaces and coarsely segmented coronary artery. Meanwhile, ADE also performs coronary artery detection to crop region-of-interest and eliminate foreground-background imbalance. The follow-up HTL module performs fine segmentation by exploiting three hierarchical vascular topologies, i.e ., key points, centerlines, and neighbor connectivity using a multi-task learning scheme. In addition, we adopt a bottom-up attention interaction (BAI) module to integrate the feature representations extracted across hierarchical topologies. Extensive experiments on public and in-house datasets show that the proposed framework achieves state-of-the-art performance for coronary artery segmentation.
doi_str_mv 10.1109/TMI.2023.3319720
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37756173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10265156</ieee_id><sourcerecordid>2921293594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-6c1c5f22fa2e4d82f9f91f69515db4be0ddbbfef9cf15cd520456dc430ca5e943</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWh97FyIDbtxMzWMyM1mWYrXgC6zgLmQyN2W0k9RkRum_N9oq4upsvnu450PomOAhIVhczG6nQ4opGzJGREHxFhoQzsuU8ux5Gw0wLcoU45zuof0QXjAmGcdiF-2xouA5KdgA3Y1sMrKqc-0qTZStk5lbuoWbr9IHDwH8e2PnycSrFj6cf02M88nYeWeVXyUj30GMR5i3YDvVNc4eoh2jFgGONnmAniaXs_F1enN_NR2PblLNMOnSXBPNDaVGUcjqkhphBDG54ITXVVYBruuqMmCENoTrmlOc8bzWGcNacRAZO0Dn696ld289hE62TdCwWCgLrg-SlkUcW5QFj-jZP_TF9d7G7yQVlFDB-HchXlPauxA8GLn0TRtXSoLll2sZXcsv13LjOp6cbor7qoX69-BHbgRO1kADAH_6aB535uwTI6SC6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921293594</pqid></control><display><type>article</type><title>An Anatomy- and Topology-Preserving Framework for Coronary Artery Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiao ; Sun, Kaicong ; Wu, Dijia ; Xiong, Xiaosong ; Liu, Jiameng ; Yao, Linlin ; Li, Shufang ; Wang, Yining ; Feng, Jun ; Shen, Dinggang</creator><creatorcontrib>Zhang, Xiao ; Sun, Kaicong ; Wu, Dijia ; Xiong, Xiaosong ; Liu, Jiameng ; Yao, Linlin ; Li, Shufang ; Wang, Yining ; Feng, Jun ; Shen, Dinggang</creatorcontrib><description>Coronary artery segmentation is critical for coronary artery disease diagnosis but challenging due to its tortuous course with numerous small branches and inter-subject variations. Most existing studies ignore important anatomical information and vascular topologies, leading to less desirable segmentation performance that usually cannot satisfy clinical demands. To deal with these challenges, in this paper we propose an anatomy-and topology-preserving two-stage framework for coronary artery segmentation. The proposed framework consists of an anatomical dependency encoding (ADE) module and a hierarchical topology learning (HTL) module for coarse-to-fine segmentation, respectively. Specifically, the ADE module segments four heart chambers and aorta, and thus five distance field maps are obtained to encode distance between chamber surfaces and coarsely segmented coronary artery. Meanwhile, ADE also performs coronary artery detection to crop region-of-interest and eliminate foreground-background imbalance. The follow-up HTL module performs fine segmentation by exploiting three hierarchical vascular topologies, i.e ., key points, centerlines, and neighbor connectivity using a multi-task learning scheme. In addition, we adopt a bottom-up attention interaction (BAI) module to integrate the feature representations extracted across hierarchical topologies. Extensive experiments on public and in-house datasets show that the proposed framework achieves state-of-the-art performance for coronary artery segmentation.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3319720</identifier><identifier>PMID: 37756173</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>anatomical dependency encoding ; Anatomy ; Aorta ; Arteries ; Biomedical imaging ; Cardiovascular disease ; coarse-to-fine segmentation ; Coronary Artery Disease ; Coronary artery segmentation ; Coronary vessels ; Deep Learning ; Encoding ; Feature extraction ; Heart ; Heart - diagnostic imaging ; Heart diseases ; hierarchical topology representation ; Humans ; Image Processing, Computer-Assisted ; Image segmentation ; Learning ; Modules ; multi-task learning ; Segmentation ; Topology</subject><ispartof>IEEE transactions on medical imaging, 2024-02, Vol.43 (2), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-6c1c5f22fa2e4d82f9f91f69515db4be0ddbbfef9cf15cd520456dc430ca5e943</cites><orcidid>0000-0002-7934-5698 ; 0000-0002-7252-3834 ; 0009-0006-4347-9172 ; 0000-0002-9999-2542 ; 0000-0002-1553-887X ; 0000-0002-0706-2103 ; 0009-0000-8796-9591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10265156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10265156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37756173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Sun, Kaicong</creatorcontrib><creatorcontrib>Wu, Dijia</creatorcontrib><creatorcontrib>Xiong, Xiaosong</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>Yao, Linlin</creatorcontrib><creatorcontrib>Li, Shufang</creatorcontrib><creatorcontrib>Wang, Yining</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>An Anatomy- and Topology-Preserving Framework for Coronary Artery Segmentation</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Coronary artery segmentation is critical for coronary artery disease diagnosis but challenging due to its tortuous course with numerous small branches and inter-subject variations. Most existing studies ignore important anatomical information and vascular topologies, leading to less desirable segmentation performance that usually cannot satisfy clinical demands. To deal with these challenges, in this paper we propose an anatomy-and topology-preserving two-stage framework for coronary artery segmentation. The proposed framework consists of an anatomical dependency encoding (ADE) module and a hierarchical topology learning (HTL) module for coarse-to-fine segmentation, respectively. Specifically, the ADE module segments four heart chambers and aorta, and thus five distance field maps are obtained to encode distance between chamber surfaces and coarsely segmented coronary artery. Meanwhile, ADE also performs coronary artery detection to crop region-of-interest and eliminate foreground-background imbalance. The follow-up HTL module performs fine segmentation by exploiting three hierarchical vascular topologies, i.e ., key points, centerlines, and neighbor connectivity using a multi-task learning scheme. In addition, we adopt a bottom-up attention interaction (BAI) module to integrate the feature representations extracted across hierarchical topologies. Extensive experiments on public and in-house datasets show that the proposed framework achieves state-of-the-art performance for coronary artery segmentation.</description><subject>anatomical dependency encoding</subject><subject>Anatomy</subject><subject>Aorta</subject><subject>Arteries</subject><subject>Biomedical imaging</subject><subject>Cardiovascular disease</subject><subject>coarse-to-fine segmentation</subject><subject>Coronary Artery Disease</subject><subject>Coronary artery segmentation</subject><subject>Coronary vessels</subject><subject>Deep Learning</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Heart</subject><subject>Heart - diagnostic imaging</subject><subject>Heart diseases</subject><subject>hierarchical topology representation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>Modules</subject><subject>multi-task learning</subject><subject>Segmentation</subject><subject>Topology</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEUhYMoWh97FyIDbtxMzWMyM1mWYrXgC6zgLmQyN2W0k9RkRum_N9oq4upsvnu450PomOAhIVhczG6nQ4opGzJGREHxFhoQzsuU8ux5Gw0wLcoU45zuof0QXjAmGcdiF-2xouA5KdgA3Y1sMrKqc-0qTZStk5lbuoWbr9IHDwH8e2PnycSrFj6cf02M88nYeWeVXyUj30GMR5i3YDvVNc4eoh2jFgGONnmAniaXs_F1enN_NR2PblLNMOnSXBPNDaVGUcjqkhphBDG54ITXVVYBruuqMmCENoTrmlOc8bzWGcNacRAZO0Dn696ld289hE62TdCwWCgLrg-SlkUcW5QFj-jZP_TF9d7G7yQVlFDB-HchXlPauxA8GLn0TRtXSoLll2sZXcsv13LjOp6cbor7qoX69-BHbgRO1kADAH_6aB535uwTI6SC6Q</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhang, Xiao</creator><creator>Sun, Kaicong</creator><creator>Wu, Dijia</creator><creator>Xiong, Xiaosong</creator><creator>Liu, Jiameng</creator><creator>Yao, Linlin</creator><creator>Li, Shufang</creator><creator>Wang, Yining</creator><creator>Feng, Jun</creator><creator>Shen, Dinggang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7934-5698</orcidid><orcidid>https://orcid.org/0000-0002-7252-3834</orcidid><orcidid>https://orcid.org/0009-0006-4347-9172</orcidid><orcidid>https://orcid.org/0000-0002-9999-2542</orcidid><orcidid>https://orcid.org/0000-0002-1553-887X</orcidid><orcidid>https://orcid.org/0000-0002-0706-2103</orcidid><orcidid>https://orcid.org/0009-0000-8796-9591</orcidid></search><sort><creationdate>20240201</creationdate><title>An Anatomy- and Topology-Preserving Framework for Coronary Artery Segmentation</title><author>Zhang, Xiao ; Sun, Kaicong ; Wu, Dijia ; Xiong, Xiaosong ; Liu, Jiameng ; Yao, Linlin ; Li, Shufang ; Wang, Yining ; Feng, Jun ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-6c1c5f22fa2e4d82f9f91f69515db4be0ddbbfef9cf15cd520456dc430ca5e943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anatomical dependency encoding</topic><topic>Anatomy</topic><topic>Aorta</topic><topic>Arteries</topic><topic>Biomedical imaging</topic><topic>Cardiovascular disease</topic><topic>coarse-to-fine segmentation</topic><topic>Coronary Artery Disease</topic><topic>Coronary artery segmentation</topic><topic>Coronary vessels</topic><topic>Deep Learning</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Heart</topic><topic>Heart - diagnostic imaging</topic><topic>Heart diseases</topic><topic>hierarchical topology representation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>Modules</topic><topic>multi-task learning</topic><topic>Segmentation</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Sun, Kaicong</creatorcontrib><creatorcontrib>Wu, Dijia</creatorcontrib><creatorcontrib>Xiong, Xiaosong</creatorcontrib><creatorcontrib>Liu, Jiameng</creatorcontrib><creatorcontrib>Yao, Linlin</creatorcontrib><creatorcontrib>Li, Shufang</creatorcontrib><creatorcontrib>Wang, Yining</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiao</au><au>Sun, Kaicong</au><au>Wu, Dijia</au><au>Xiong, Xiaosong</au><au>Liu, Jiameng</au><au>Yao, Linlin</au><au>Li, Shufang</au><au>Wang, Yining</au><au>Feng, Jun</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Anatomy- and Topology-Preserving Framework for Coronary Artery Segmentation</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Coronary artery segmentation is critical for coronary artery disease diagnosis but challenging due to its tortuous course with numerous small branches and inter-subject variations. Most existing studies ignore important anatomical information and vascular topologies, leading to less desirable segmentation performance that usually cannot satisfy clinical demands. To deal with these challenges, in this paper we propose an anatomy-and topology-preserving two-stage framework for coronary artery segmentation. The proposed framework consists of an anatomical dependency encoding (ADE) module and a hierarchical topology learning (HTL) module for coarse-to-fine segmentation, respectively. Specifically, the ADE module segments four heart chambers and aorta, and thus five distance field maps are obtained to encode distance between chamber surfaces and coarsely segmented coronary artery. Meanwhile, ADE also performs coronary artery detection to crop region-of-interest and eliminate foreground-background imbalance. The follow-up HTL module performs fine segmentation by exploiting three hierarchical vascular topologies, i.e ., key points, centerlines, and neighbor connectivity using a multi-task learning scheme. In addition, we adopt a bottom-up attention interaction (BAI) module to integrate the feature representations extracted across hierarchical topologies. Extensive experiments on public and in-house datasets show that the proposed framework achieves state-of-the-art performance for coronary artery segmentation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37756173</pmid><doi>10.1109/TMI.2023.3319720</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7934-5698</orcidid><orcidid>https://orcid.org/0000-0002-7252-3834</orcidid><orcidid>https://orcid.org/0009-0006-4347-9172</orcidid><orcidid>https://orcid.org/0000-0002-9999-2542</orcidid><orcidid>https://orcid.org/0000-0002-1553-887X</orcidid><orcidid>https://orcid.org/0000-0002-0706-2103</orcidid><orcidid>https://orcid.org/0009-0000-8796-9591</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-02, Vol.43 (2), p.1-1
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_pubmed_primary_37756173
source IEEE Electronic Library (IEL)
subjects anatomical dependency encoding
Anatomy
Aorta
Arteries
Biomedical imaging
Cardiovascular disease
coarse-to-fine segmentation
Coronary Artery Disease
Coronary artery segmentation
Coronary vessels
Deep Learning
Encoding
Feature extraction
Heart
Heart - diagnostic imaging
Heart diseases
hierarchical topology representation
Humans
Image Processing, Computer-Assisted
Image segmentation
Learning
Modules
multi-task learning
Segmentation
Topology
title An Anatomy- and Topology-Preserving Framework for Coronary Artery Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Anatomy-%20and%20Topology-Preserving%20Framework%20for%20Coronary%20Artery%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zhang,%20Xiao&rft.date=2024-02-01&rft.volume=43&rft.issue=2&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3319720&rft_dat=%3Cproquest_RIE%3E2921293594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921293594&rft_id=info:pmid/37756173&rft_ieee_id=10265156&rfr_iscdi=true