MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification
Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual ident...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2023-12, Vol.27 (12), p.5767-5778 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5778 |
---|---|
container_issue | 12 |
container_start_page | 5767 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 27 |
creator | Miao, Yifan Jiang, Wanqing Su, Nuo Shan, Jun Jiang, Tianzi Zuo, Nianming |
description | Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual identification in recent years. However, most existing work uses EEG signals from a single session or emotion, ignoring large differences between domains. As EEG signals do not satisfy the traditional deep learning assumption that training and test sets are independently and identically distributed, it is difficult for trained models to maintain good classification performance for new sessions or new emotions. In this article, an individual identification method, called Multi-Loss Domain Adaptor (MLDA), is proposed to deal with the differences between marginal and conditional distributions elicited by different domains. The proposed method consists of four parts: a) Feature extractor, which uses deep neural networks to extract deep features from EEG data; b) Label predictor, which uses full-layer networks to predict subject labels; c) Marginal distribution adaptation, which uses maximum mean discrepancy (MMD) to reduce marginal distribution differences; d) Associative domain adaptation, which adapts to conditional distribution differences. Using the MLDA method, the cross-session and cross-emotion EEG-based individual identification problem is addressed by reducing the influence of time and emotion. Experimental results confirmed that the method outperforms other state-of-the-art approaches. |
doi_str_mv | 10.1109/JBHI.2023.3315974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37713231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10251967</ieee_id><sourcerecordid>2865781996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-24792d163629dba44383638f1fefbe9ea081955e5047bda69e35db03477eaf1a3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMobsz9AEGk4I03nflok8a7fblNOrxQr0u6nEpGP2bTCv57U9aJGAg5vHnOS05ehK4JnhCC5cPzbL2ZUEzZhDESShGcoSElPPIpxdH5qSYyGKCxtXvsVuQkyS_RgAlBGGVkiD628WL66G3bvDF-XFnrLapCmdKbanVoqtrL3J7X7sJ_BWtNVXqq1L2yLKqmU5bLlT9TFrS3KbX5MrpVubfRUDYmMzvVMVfoIlO5hXF_jtD70_Jtvvbjl9VmPo39HcO08WkgJNWEM06lTlUQsIhxFmUkgywFCcrNIMMQQhyIVCsugYU6xSwQAlRGFBuh-6Pvoa4-W7BNUhi7gzxXJVStTWjEQ-E8JHfo3T90X7V16V7nKBlFEnNKHEWO1K4buYYsOdSmUPV3QnDSBZF0QSRdEEkfhOu57Z3btAD923H6dgfcHAEDAH8MaUgkF-wHA-SKRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898890621</pqid></control><display><type>article</type><title>MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification</title><source>IEEE Electronic Library (IEL)</source><creator>Miao, Yifan ; Jiang, Wanqing ; Su, Nuo ; Shan, Jun ; Jiang, Tianzi ; Zuo, Nianming</creator><creatorcontrib>Miao, Yifan ; Jiang, Wanqing ; Su, Nuo ; Shan, Jun ; Jiang, Tianzi ; Zuo, Nianming</creatorcontrib><description>Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual identification in recent years. However, most existing work uses EEG signals from a single session or emotion, ignoring large differences between domains. As EEG signals do not satisfy the traditional deep learning assumption that training and test sets are independently and identically distributed, it is difficult for trained models to maintain good classification performance for new sessions or new emotions. In this article, an individual identification method, called Multi-Loss Domain Adaptor (MLDA), is proposed to deal with the differences between marginal and conditional distributions elicited by different domains. The proposed method consists of four parts: a) Feature extractor, which uses deep neural networks to extract deep features from EEG data; b) Label predictor, which uses full-layer networks to predict subject labels; c) Marginal distribution adaptation, which uses maximum mean discrepancy (MMD) to reduce marginal distribution differences; d) Associative domain adaptation, which adapts to conditional distribution differences. Using the MLDA method, the cross-session and cross-emotion EEG-based individual identification problem is addressed by reducing the influence of time and emotion. Experimental results confirmed that the method outperforms other state-of-the-art approaches.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3315974</identifier><identifier>PMID: 37713231</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>across mental states ; across time ; Adaptation ; Adapters ; Adaptor proteins ; Algorithms ; Artificial neural networks ; biometric ; Biometric recognition systems ; Brain modeling ; Deep learning ; domain adaptation ; EEG ; Electroencephalography ; Electroencephalography - methods ; Emotions ; Feature extraction ; Fingerprint verification ; Humans ; Identification methods ; Labels ; Machine learning ; Motion pictures ; Neural networks ; Neural Networks, Computer ; Pattern recognition ; Recording ; Software ; Support vector machines ; Task analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2023-12, Vol.27 (12), p.5767-5778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-24792d163629dba44383638f1fefbe9ea081955e5047bda69e35db03477eaf1a3</cites><orcidid>0000-0001-9531-291X ; 0000-0002-6726-4575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10251967$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10251967$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37713231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Yifan</creatorcontrib><creatorcontrib>Jiang, Wanqing</creatorcontrib><creatorcontrib>Su, Nuo</creatorcontrib><creatorcontrib>Shan, Jun</creatorcontrib><creatorcontrib>Jiang, Tianzi</creatorcontrib><creatorcontrib>Zuo, Nianming</creatorcontrib><title>MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual identification in recent years. However, most existing work uses EEG signals from a single session or emotion, ignoring large differences between domains. As EEG signals do not satisfy the traditional deep learning assumption that training and test sets are independently and identically distributed, it is difficult for trained models to maintain good classification performance for new sessions or new emotions. In this article, an individual identification method, called Multi-Loss Domain Adaptor (MLDA), is proposed to deal with the differences between marginal and conditional distributions elicited by different domains. The proposed method consists of four parts: a) Feature extractor, which uses deep neural networks to extract deep features from EEG data; b) Label predictor, which uses full-layer networks to predict subject labels; c) Marginal distribution adaptation, which uses maximum mean discrepancy (MMD) to reduce marginal distribution differences; d) Associative domain adaptation, which adapts to conditional distribution differences. Using the MLDA method, the cross-session and cross-emotion EEG-based individual identification problem is addressed by reducing the influence of time and emotion. Experimental results confirmed that the method outperforms other state-of-the-art approaches.</description><subject>across mental states</subject><subject>across time</subject><subject>Adaptation</subject><subject>Adapters</subject><subject>Adaptor proteins</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>biometric</subject><subject>Biometric recognition systems</subject><subject>Brain modeling</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Fingerprint verification</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Motion pictures</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pattern recognition</subject><subject>Recording</subject><subject>Software</subject><subject>Support vector machines</subject><subject>Task analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV1LwzAUhoMobsz9AEGk4I03nflok8a7fblNOrxQr0u6nEpGP2bTCv57U9aJGAg5vHnOS05ehK4JnhCC5cPzbL2ZUEzZhDESShGcoSElPPIpxdH5qSYyGKCxtXvsVuQkyS_RgAlBGGVkiD628WL66G3bvDF-XFnrLapCmdKbanVoqtrL3J7X7sJ_BWtNVXqq1L2yLKqmU5bLlT9TFrS3KbX5MrpVubfRUDYmMzvVMVfoIlO5hXF_jtD70_Jtvvbjl9VmPo39HcO08WkgJNWEM06lTlUQsIhxFmUkgywFCcrNIMMQQhyIVCsugYU6xSwQAlRGFBuh-6Pvoa4-W7BNUhi7gzxXJVStTWjEQ-E8JHfo3T90X7V16V7nKBlFEnNKHEWO1K4buYYsOdSmUPV3QnDSBZF0QSRdEEkfhOu57Z3btAD923H6dgfcHAEDAH8MaUgkF-wHA-SKRA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Miao, Yifan</creator><creator>Jiang, Wanqing</creator><creator>Su, Nuo</creator><creator>Shan, Jun</creator><creator>Jiang, Tianzi</creator><creator>Zuo, Nianming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9531-291X</orcidid><orcidid>https://orcid.org/0000-0002-6726-4575</orcidid></search><sort><creationdate>20231201</creationdate><title>MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification</title><author>Miao, Yifan ; Jiang, Wanqing ; Su, Nuo ; Shan, Jun ; Jiang, Tianzi ; Zuo, Nianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-24792d163629dba44383638f1fefbe9ea081955e5047bda69e35db03477eaf1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>across mental states</topic><topic>across time</topic><topic>Adaptation</topic><topic>Adapters</topic><topic>Adaptor proteins</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>biometric</topic><topic>Biometric recognition systems</topic><topic>Brain modeling</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Fingerprint verification</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Motion pictures</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pattern recognition</topic><topic>Recording</topic><topic>Software</topic><topic>Support vector machines</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Yifan</creatorcontrib><creatorcontrib>Jiang, Wanqing</creatorcontrib><creatorcontrib>Su, Nuo</creatorcontrib><creatorcontrib>Shan, Jun</creatorcontrib><creatorcontrib>Jiang, Tianzi</creatorcontrib><creatorcontrib>Zuo, Nianming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miao, Yifan</au><au>Jiang, Wanqing</au><au>Su, Nuo</au><au>Shan, Jun</au><au>Jiang, Tianzi</au><au>Zuo, Nianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>12</issue><spage>5767</spage><epage>5778</epage><pages>5767-5778</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Traditional individual identification methods, such as face and fingerprint recognition, carry the risk of personal information leakage. The uniqueness and privacy of electroencephalograms (EEG) and the popularization of EEG acquisition devices have intensified research on EEG-based individual identification in recent years. However, most existing work uses EEG signals from a single session or emotion, ignoring large differences between domains. As EEG signals do not satisfy the traditional deep learning assumption that training and test sets are independently and identically distributed, it is difficult for trained models to maintain good classification performance for new sessions or new emotions. In this article, an individual identification method, called Multi-Loss Domain Adaptor (MLDA), is proposed to deal with the differences between marginal and conditional distributions elicited by different domains. The proposed method consists of four parts: a) Feature extractor, which uses deep neural networks to extract deep features from EEG data; b) Label predictor, which uses full-layer networks to predict subject labels; c) Marginal distribution adaptation, which uses maximum mean discrepancy (MMD) to reduce marginal distribution differences; d) Associative domain adaptation, which adapts to conditional distribution differences. Using the MLDA method, the cross-session and cross-emotion EEG-based individual identification problem is addressed by reducing the influence of time and emotion. Experimental results confirmed that the method outperforms other state-of-the-art approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37713231</pmid><doi>10.1109/JBHI.2023.3315974</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9531-291X</orcidid><orcidid>https://orcid.org/0000-0002-6726-4575</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2023-12, Vol.27 (12), p.5767-5778 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_37713231 |
source | IEEE Electronic Library (IEL) |
subjects | across mental states across time Adaptation Adapters Adaptor proteins Algorithms Artificial neural networks biometric Biometric recognition systems Brain modeling Deep learning domain adaptation EEG Electroencephalography Electroencephalography - methods Emotions Feature extraction Fingerprint verification Humans Identification methods Labels Machine learning Motion pictures Neural networks Neural Networks, Computer Pattern recognition Recording Software Support vector machines Task analysis |
title | MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MLDA:%20Multi-Loss%20Domain%20Adaptor%20for%20Cross-Session%20and%20Cross-Emotion%20EEG-Based%20Individual%20Identification&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Miao,%20Yifan&rft.date=2023-12-01&rft.volume=27&rft.issue=12&rft.spage=5767&rft.epage=5778&rft.pages=5767-5778&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3315974&rft_dat=%3Cproquest_RIE%3E2865781996%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898890621&rft_id=info:pmid/37713231&rft_ieee_id=10251967&rfr_iscdi=true |