Effect of grain boundary resistance on the ionic conductivity of amorphous x Li 2 S-(100- x )LiI binary system
Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state electrolytes is linked to the presence of both amorphous and crystalline phases. This study employs the synthesis method of mechanochemical m...
Gespeichert in:
Veröffentlicht in: | Frontiers in chemistry 2023, Vol.11, p.1230187 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 1230187 |
container_title | Frontiers in chemistry |
container_volume | 11 |
creator | Di, Longbang Pan, Jiangyang Gao, Lei Zhu, Jinlong Wang, Liping Wang, Xiaomeng Su, Qinqin Gao, Song Zou, Ruqiang Zhao, Yusheng Han, Songbai |
description | Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state electrolytes is linked to the presence of both amorphous and crystalline phases. This study employs the synthesis method of mechanochemical milling on binary
Li
S-(100-
)LiI system to investigate the effect of amorphization on its ionic conductivity. Powder X-ray diffraction (PXRD) shows that the stoichiometry of Li
S and LiI has a significant impact on the amorphization of
Li
S-(100-
)LiI system. Furthermore, the analysis of electrochemical impedance spectroscopy (EIS) indicates that the amorphization of
Li
S-(100-
)LiI system is strongly correlated with its ionic conductivity, which is primarily attributed to the effect of grain boundary resistance. These findings uncover the latent connections between amorphization, grain boundary resistance, and ionic conductivity, offering insight into the design of innovative amorphous SSEs. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_37547908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37547908</sourcerecordid><originalsourceid>FETCH-pubmed_primary_375479083</originalsourceid><addsrcrecordid>eNqFjrEKwjAYhIMoVrSvIP-oQyFNa2tnURTcdC9pmtpfbFKSVOzbq6Dg5nR38N1xAzJhLEsClsTJ8Md7xLf2SikNWRjFjI6JF6WrOM3oekLUtqqkcKAruBiOCgrdqZKbHoy0aB1XQoJW4GoJqBUKEFqVnXB4R9e_a7zRpq11Z-EBRwQGp2ARUhq84vKIByhQvedsb51sZmRU8ZuV_kenZL7bnjf7oO2KRpZ5a7B50fn3YPQXeAKn9EfR</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of grain boundary resistance on the ionic conductivity of amorphous x Li 2 S-(100- x )LiI binary system</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Di, Longbang ; Pan, Jiangyang ; Gao, Lei ; Zhu, Jinlong ; Wang, Liping ; Wang, Xiaomeng ; Su, Qinqin ; Gao, Song ; Zou, Ruqiang ; Zhao, Yusheng ; Han, Songbai</creator><creatorcontrib>Di, Longbang ; Pan, Jiangyang ; Gao, Lei ; Zhu, Jinlong ; Wang, Liping ; Wang, Xiaomeng ; Su, Qinqin ; Gao, Song ; Zou, Ruqiang ; Zhao, Yusheng ; Han, Songbai</creatorcontrib><description>Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state electrolytes is linked to the presence of both amorphous and crystalline phases. This study employs the synthesis method of mechanochemical milling on binary
Li
S-(100-
)LiI system to investigate the effect of amorphization on its ionic conductivity. Powder X-ray diffraction (PXRD) shows that the stoichiometry of Li
S and LiI has a significant impact on the amorphization of
Li
S-(100-
)LiI system. Furthermore, the analysis of electrochemical impedance spectroscopy (EIS) indicates that the amorphization of
Li
S-(100-
)LiI system is strongly correlated with its ionic conductivity, which is primarily attributed to the effect of grain boundary resistance. These findings uncover the latent connections between amorphization, grain boundary resistance, and ionic conductivity, offering insight into the design of innovative amorphous SSEs.</description><identifier>ISSN: 2296-2646</identifier><identifier>EISSN: 2296-2646</identifier><identifier>PMID: 37547908</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Frontiers in chemistry, 2023, Vol.11, p.1230187</ispartof><rights>Copyright © 2023 Di, Pan, Gao, Zhu, Wang, Wang, Su, Gao, Zou, Zhao and Han.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37547908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di, Longbang</creatorcontrib><creatorcontrib>Pan, Jiangyang</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Wang, Liping</creatorcontrib><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Su, Qinqin</creatorcontrib><creatorcontrib>Gao, Song</creatorcontrib><creatorcontrib>Zou, Ruqiang</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><creatorcontrib>Han, Songbai</creatorcontrib><title>Effect of grain boundary resistance on the ionic conductivity of amorphous x Li 2 S-(100- x )LiI binary system</title><title>Frontiers in chemistry</title><addtitle>Front Chem</addtitle><description>Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state electrolytes is linked to the presence of both amorphous and crystalline phases. This study employs the synthesis method of mechanochemical milling on binary
Li
S-(100-
)LiI system to investigate the effect of amorphization on its ionic conductivity. Powder X-ray diffraction (PXRD) shows that the stoichiometry of Li
S and LiI has a significant impact on the amorphization of
Li
S-(100-
)LiI system. Furthermore, the analysis of electrochemical impedance spectroscopy (EIS) indicates that the amorphization of
Li
S-(100-
)LiI system is strongly correlated with its ionic conductivity, which is primarily attributed to the effect of grain boundary resistance. These findings uncover the latent connections between amorphization, grain boundary resistance, and ionic conductivity, offering insight into the design of innovative amorphous SSEs.</description><issn>2296-2646</issn><issn>2296-2646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFjrEKwjAYhIMoVrSvIP-oQyFNa2tnURTcdC9pmtpfbFKSVOzbq6Dg5nR38N1xAzJhLEsClsTJ8Md7xLf2SikNWRjFjI6JF6WrOM3oekLUtqqkcKAruBiOCgrdqZKbHoy0aB1XQoJW4GoJqBUKEFqVnXB4R9e_a7zRpq11Z-EBRwQGp2ARUhq84vKIByhQvedsb51sZmRU8ZuV_kenZL7bnjf7oO2KRpZ5a7B50fn3YPQXeAKn9EfR</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Di, Longbang</creator><creator>Pan, Jiangyang</creator><creator>Gao, Lei</creator><creator>Zhu, Jinlong</creator><creator>Wang, Liping</creator><creator>Wang, Xiaomeng</creator><creator>Su, Qinqin</creator><creator>Gao, Song</creator><creator>Zou, Ruqiang</creator><creator>Zhao, Yusheng</creator><creator>Han, Songbai</creator><scope>NPM</scope></search><sort><creationdate>2023</creationdate><title>Effect of grain boundary resistance on the ionic conductivity of amorphous x Li 2 S-(100- x )LiI binary system</title><author>Di, Longbang ; Pan, Jiangyang ; Gao, Lei ; Zhu, Jinlong ; Wang, Liping ; Wang, Xiaomeng ; Su, Qinqin ; Gao, Song ; Zou, Ruqiang ; Zhao, Yusheng ; Han, Songbai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_375479083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di, Longbang</creatorcontrib><creatorcontrib>Pan, Jiangyang</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Wang, Liping</creatorcontrib><creatorcontrib>Wang, Xiaomeng</creatorcontrib><creatorcontrib>Su, Qinqin</creatorcontrib><creatorcontrib>Gao, Song</creatorcontrib><creatorcontrib>Zou, Ruqiang</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><creatorcontrib>Han, Songbai</creatorcontrib><collection>PubMed</collection><jtitle>Frontiers in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di, Longbang</au><au>Pan, Jiangyang</au><au>Gao, Lei</au><au>Zhu, Jinlong</au><au>Wang, Liping</au><au>Wang, Xiaomeng</au><au>Su, Qinqin</au><au>Gao, Song</au><au>Zou, Ruqiang</au><au>Zhao, Yusheng</au><au>Han, Songbai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of grain boundary resistance on the ionic conductivity of amorphous x Li 2 S-(100- x )LiI binary system</atitle><jtitle>Frontiers in chemistry</jtitle><addtitle>Front Chem</addtitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>1230187</spage><pages>1230187-</pages><issn>2296-2646</issn><eissn>2296-2646</eissn><abstract>Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state electrolytes is linked to the presence of both amorphous and crystalline phases. This study employs the synthesis method of mechanochemical milling on binary
Li
S-(100-
)LiI system to investigate the effect of amorphization on its ionic conductivity. Powder X-ray diffraction (PXRD) shows that the stoichiometry of Li
S and LiI has a significant impact on the amorphization of
Li
S-(100-
)LiI system. Furthermore, the analysis of electrochemical impedance spectroscopy (EIS) indicates that the amorphization of
Li
S-(100-
)LiI system is strongly correlated with its ionic conductivity, which is primarily attributed to the effect of grain boundary resistance. These findings uncover the latent connections between amorphization, grain boundary resistance, and ionic conductivity, offering insight into the design of innovative amorphous SSEs.</abstract><cop>Switzerland</cop><pmid>37547908</pmid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-2646 |
ispartof | Frontiers in chemistry, 2023, Vol.11, p.1230187 |
issn | 2296-2646 2296-2646 |
language | eng |
recordid | cdi_pubmed_primary_37547908 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Effect of grain boundary resistance on the ionic conductivity of amorphous x Li 2 S-(100- x )LiI binary system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20grain%20boundary%20resistance%20on%20the%20ionic%20conductivity%20of%20amorphous%20x%20Li%202%20S-(100-%20x%20)LiI%20binary%20system&rft.jtitle=Frontiers%20in%20chemistry&rft.au=Di,%20Longbang&rft.date=2023&rft.volume=11&rft.spage=1230187&rft.pages=1230187-&rft.issn=2296-2646&rft.eissn=2296-2646&rft_id=info:doi/&rft_dat=%3Cpubmed%3E37547908%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37547908&rfr_iscdi=true |