Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems
Although vertical configurations for high-density storage require challenging process steps, such as etching high aspect ratios and atomic layer deposition (ALD), they are more affordable with a relatively simple lithography process and have been employed in many studies. Herein, the potential of me...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-08, Vol.15 (32), p.13239-13251 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13251 |
---|---|
container_issue | 32 |
container_start_page | 13239 |
container_title | Nanoscale |
container_volume | 15 |
creator | Yang, Seyeong Kim, Taegyun Kim, Sunghun Chung, Daewon Kim, Tae-Hyeon Lee, Jung Kyu Kim, Sungjoon Ismail, Muhammad Mahata, Chandreswar Kim, Sungjun Cho, Seongjae |
description | Although vertical configurations for high-density storage require challenging process steps, such as etching high aspect ratios and atomic layer deposition (ALD), they are more affordable with a relatively simple lithography process and have been employed in many studies. Herein, the potential of memristors with CMOS-compatible 3D vertical stacked structures of Pt/Ti/HfO
x
/TiN-NCs/HfO
x
/TiN is examined for use in neuromorphic systems. The electrical characteristics (including
I
-
V
properties, retention, and endurance) were investigated for both planar single cells and vertical resistive random-access memory (VRRAM) cells at each layer, demonstrating their outstanding non-volatile memory capabilities. In addition, various synaptic functions (including potentiation and depression) under different pulse schemes, excitatory postsynaptic current (EPSC), and spike-timing-dependent plasticity (STDP) were investigated. In pattern recognition simulations, an improved recognition rate was achieved by the linearly changing conductance, which was enhanced by the incremental pulse scheme. The achieved results demonstrated the feasibility of employing VRRAM with TiN nanocrystals in neuromorphic systems that resemble the human brain.
Synaptic plasticity and non-volatile memory behaviors are demonstrated in TiN-nanocrystal-embedded 3D vertical structure-type memristor synapses to realize neuromorphic systems. |
doi_str_mv | 10.1039/d3nr01930f |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37525621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844679375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c4db820fff42ea200cd728087c5323825b3a059396c6229ac93bfb718654cd2b3</originalsourceid><addsrcrecordid>eNpdkctq3jAQRkVpaK6b7lsE3ZSCU1lj-bIMSdMEQgJNsjayNCYOtuRq7IAfpO8bOX_6B7IawZw5GuZj7HMqjlMB1U8LLoi0AtF-YHtSZCIBKOTH7TvPdtk-0aMQeQU5fGK7UCipcpnusX-3i9Pj1Bk-9ppi7aaFa2e58y558r2euh75gIMPCzcPOmgzYehWknjn-F13nTjtvAkLTbpPcGjQWrQczvgThojpfh1fR3xIGk2xR-ufhMRbH7jDOfioHx_iEhQtONAh22l1T3j0Wg_Y_fmvu9OL5Orm9-XpyVVioCinxGS2KaVo2zaTqKUQxhayFGVhFEgopWpAC1VBlZtcykqbCpq2KdIyV5mxsoED9n3jHYP_OyNN9dCRwb7XDv1MtSyzLC-qeK6IfnuHPvo5uLhdpFRUFkqlkfqxoUzwRAHbegzdoMNSp6Jew6rP4PrPS1jnEf76qpybAe0W_Z9OBL5sgEBm231LG54BU1OcJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851867551</pqid></control><display><type>article</type><title>Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems</title><source>Royal Society of Chemistry</source><creator>Yang, Seyeong ; Kim, Taegyun ; Kim, Sunghun ; Chung, Daewon ; Kim, Tae-Hyeon ; Lee, Jung Kyu ; Kim, Sungjoon ; Ismail, Muhammad ; Mahata, Chandreswar ; Kim, Sungjun ; Cho, Seongjae</creator><creatorcontrib>Yang, Seyeong ; Kim, Taegyun ; Kim, Sunghun ; Chung, Daewon ; Kim, Tae-Hyeon ; Lee, Jung Kyu ; Kim, Sungjoon ; Ismail, Muhammad ; Mahata, Chandreswar ; Kim, Sungjun ; Cho, Seongjae</creatorcontrib><description>Although vertical configurations for high-density storage require challenging process steps, such as etching high aspect ratios and atomic layer deposition (ALD), they are more affordable with a relatively simple lithography process and have been employed in many studies. Herein, the potential of memristors with CMOS-compatible 3D vertical stacked structures of Pt/Ti/HfO
x
/TiN-NCs/HfO
x
/TiN is examined for use in neuromorphic systems. The electrical characteristics (including
I
-
V
properties, retention, and endurance) were investigated for both planar single cells and vertical resistive random-access memory (VRRAM) cells at each layer, demonstrating their outstanding non-volatile memory capabilities. In addition, various synaptic functions (including potentiation and depression) under different pulse schemes, excitatory postsynaptic current (EPSC), and spike-timing-dependent plasticity (STDP) were investigated. In pattern recognition simulations, an improved recognition rate was achieved by the linearly changing conductance, which was enhanced by the incremental pulse scheme. The achieved results demonstrated the feasibility of employing VRRAM with TiN nanocrystals in neuromorphic systems that resemble the human brain.
Synaptic plasticity and non-volatile memory behaviors are demonstrated in TiN-nanocrystal-embedded 3D vertical structure-type memristor synapses to realize neuromorphic systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr01930f</identifier><identifier>PMID: 37525621</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aspect ratio ; Atomic layer epitaxy ; Memristors ; Nanocrystals ; Pattern recognition ; Random access memory ; Synapses</subject><ispartof>Nanoscale, 2023-08, Vol.15 (32), p.13239-13251</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c4db820fff42ea200cd728087c5323825b3a059396c6229ac93bfb718654cd2b3</citedby><cites>FETCH-LOGICAL-c378t-c4db820fff42ea200cd728087c5323825b3a059396c6229ac93bfb718654cd2b3</cites><orcidid>0000-0002-9873-2474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37525621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Seyeong</creatorcontrib><creatorcontrib>Kim, Taegyun</creatorcontrib><creatorcontrib>Kim, Sunghun</creatorcontrib><creatorcontrib>Chung, Daewon</creatorcontrib><creatorcontrib>Kim, Tae-Hyeon</creatorcontrib><creatorcontrib>Lee, Jung Kyu</creatorcontrib><creatorcontrib>Kim, Sungjoon</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><creatorcontrib>Mahata, Chandreswar</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><title>Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Although vertical configurations for high-density storage require challenging process steps, such as etching high aspect ratios and atomic layer deposition (ALD), they are more affordable with a relatively simple lithography process and have been employed in many studies. Herein, the potential of memristors with CMOS-compatible 3D vertical stacked structures of Pt/Ti/HfO
x
/TiN-NCs/HfO
x
/TiN is examined for use in neuromorphic systems. The electrical characteristics (including
I
-
V
properties, retention, and endurance) were investigated for both planar single cells and vertical resistive random-access memory (VRRAM) cells at each layer, demonstrating their outstanding non-volatile memory capabilities. In addition, various synaptic functions (including potentiation and depression) under different pulse schemes, excitatory postsynaptic current (EPSC), and spike-timing-dependent plasticity (STDP) were investigated. In pattern recognition simulations, an improved recognition rate was achieved by the linearly changing conductance, which was enhanced by the incremental pulse scheme. The achieved results demonstrated the feasibility of employing VRRAM with TiN nanocrystals in neuromorphic systems that resemble the human brain.
Synaptic plasticity and non-volatile memory behaviors are demonstrated in TiN-nanocrystal-embedded 3D vertical structure-type memristor synapses to realize neuromorphic systems.</description><subject>Aspect ratio</subject><subject>Atomic layer epitaxy</subject><subject>Memristors</subject><subject>Nanocrystals</subject><subject>Pattern recognition</subject><subject>Random access memory</subject><subject>Synapses</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctq3jAQRkVpaK6b7lsE3ZSCU1lj-bIMSdMEQgJNsjayNCYOtuRq7IAfpO8bOX_6B7IawZw5GuZj7HMqjlMB1U8LLoi0AtF-YHtSZCIBKOTH7TvPdtk-0aMQeQU5fGK7UCipcpnusX-3i9Pj1Bk-9ppi7aaFa2e58y558r2euh75gIMPCzcPOmgzYehWknjn-F13nTjtvAkLTbpPcGjQWrQczvgThojpfh1fR3xIGk2xR-ufhMRbH7jDOfioHx_iEhQtONAh22l1T3j0Wg_Y_fmvu9OL5Orm9-XpyVVioCinxGS2KaVo2zaTqKUQxhayFGVhFEgopWpAC1VBlZtcykqbCpq2KdIyV5mxsoED9n3jHYP_OyNN9dCRwb7XDv1MtSyzLC-qeK6IfnuHPvo5uLhdpFRUFkqlkfqxoUzwRAHbegzdoMNSp6Jew6rP4PrPS1jnEf76qpybAe0W_Z9OBL5sgEBm231LG54BU1OcJQ</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Yang, Seyeong</creator><creator>Kim, Taegyun</creator><creator>Kim, Sunghun</creator><creator>Chung, Daewon</creator><creator>Kim, Tae-Hyeon</creator><creator>Lee, Jung Kyu</creator><creator>Kim, Sungjoon</creator><creator>Ismail, Muhammad</creator><creator>Mahata, Chandreswar</creator><creator>Kim, Sungjun</creator><creator>Cho, Seongjae</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9873-2474</orcidid></search><sort><creationdate>20230817</creationdate><title>Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems</title><author>Yang, Seyeong ; Kim, Taegyun ; Kim, Sunghun ; Chung, Daewon ; Kim, Tae-Hyeon ; Lee, Jung Kyu ; Kim, Sungjoon ; Ismail, Muhammad ; Mahata, Chandreswar ; Kim, Sungjun ; Cho, Seongjae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c4db820fff42ea200cd728087c5323825b3a059396c6229ac93bfb718654cd2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aspect ratio</topic><topic>Atomic layer epitaxy</topic><topic>Memristors</topic><topic>Nanocrystals</topic><topic>Pattern recognition</topic><topic>Random access memory</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Seyeong</creatorcontrib><creatorcontrib>Kim, Taegyun</creatorcontrib><creatorcontrib>Kim, Sunghun</creatorcontrib><creatorcontrib>Chung, Daewon</creatorcontrib><creatorcontrib>Kim, Tae-Hyeon</creatorcontrib><creatorcontrib>Lee, Jung Kyu</creatorcontrib><creatorcontrib>Kim, Sungjoon</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><creatorcontrib>Mahata, Chandreswar</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><creatorcontrib>Cho, Seongjae</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Seyeong</au><au>Kim, Taegyun</au><au>Kim, Sunghun</au><au>Chung, Daewon</au><au>Kim, Tae-Hyeon</au><au>Lee, Jung Kyu</au><au>Kim, Sungjoon</au><au>Ismail, Muhammad</au><au>Mahata, Chandreswar</au><au>Kim, Sungjun</au><au>Cho, Seongjae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-08-17</date><risdate>2023</risdate><volume>15</volume><issue>32</issue><spage>13239</spage><epage>13251</epage><pages>13239-13251</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Although vertical configurations for high-density storage require challenging process steps, such as etching high aspect ratios and atomic layer deposition (ALD), they are more affordable with a relatively simple lithography process and have been employed in many studies. Herein, the potential of memristors with CMOS-compatible 3D vertical stacked structures of Pt/Ti/HfO
x
/TiN-NCs/HfO
x
/TiN is examined for use in neuromorphic systems. The electrical characteristics (including
I
-
V
properties, retention, and endurance) were investigated for both planar single cells and vertical resistive random-access memory (VRRAM) cells at each layer, demonstrating their outstanding non-volatile memory capabilities. In addition, various synaptic functions (including potentiation and depression) under different pulse schemes, excitatory postsynaptic current (EPSC), and spike-timing-dependent plasticity (STDP) were investigated. In pattern recognition simulations, an improved recognition rate was achieved by the linearly changing conductance, which was enhanced by the incremental pulse scheme. The achieved results demonstrated the feasibility of employing VRRAM with TiN nanocrystals in neuromorphic systems that resemble the human brain.
Synaptic plasticity and non-volatile memory behaviors are demonstrated in TiN-nanocrystal-embedded 3D vertical structure-type memristor synapses to realize neuromorphic systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37525621</pmid><doi>10.1039/d3nr01930f</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9873-2474</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-08, Vol.15 (32), p.13239-13251 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_pubmed_primary_37525621 |
source | Royal Society of Chemistry |
subjects | Aspect ratio Atomic layer epitaxy Memristors Nanocrystals Pattern recognition Random access memory Synapses |
title | Synaptic plasticity and non-volatile memory characteristics in TiN-nanocrystal-embedded 3D vertical memristor-based synapses for neuromorphic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20plasticity%20and%20non-volatile%20memory%20characteristics%20in%20TiN-nanocrystal-embedded%203D%20vertical%20memristor-based%20synapses%20for%20neuromorphic%20systems&rft.jtitle=Nanoscale&rft.au=Yang,%20Seyeong&rft.date=2023-08-17&rft.volume=15&rft.issue=32&rft.spage=13239&rft.epage=13251&rft.pages=13239-13251&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr01930f&rft_dat=%3Cproquest_pubme%3E2844679375%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851867551&rft_id=info:pmid/37525621&rfr_iscdi=true |