Ideal topological Weyl complex phonons in two dimensions
The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (3), p.268-2685 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2685 |
---|---|
container_issue | 3 |
container_start_page | 268 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Yu, Wei-Wang Liu, Ying He, Zeqing Wang, Lirong Zhang, Xiaoming Liu, Guodong |
description | The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective
k
·
p
model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding
topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu
2
Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking.
We propose an approach that enforces an ideal Weyl complex in 2D spinless systems. |
doi_str_mv | 10.1039/d3cp01621h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37486143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841405302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-31b48855e0ad2974befbe6c79eb9ca58cc88ea056f6dfb609b7647d58aee6e123</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEatKkaXKU-mODgR4UjyVNX11H29SkRfffm7k5wVMeeR8ej-9D6JTga4KpvCmo7jDhEVnsoTFhnIYSC7a_qxM-QkfOLTHGJCb0EI1owgQnjI6RmBWg6qA3nanNe6V9_QarOtCm6Wr4CrqFaU3rgqoN-k8TFFUDrav8zzE6KFXt4GT7TtDrw_1LOg3nT4-z9HYe6kjyPqQkZ0LEMWBVRDJhOZQ5cJ1IyKVWsdBaCFA45iUvypxjmSecJUUsFAAHEtEJutzM7az5GMD1WVM5DXWtWjCDyyLBCMMxxWt68Y8uzWBbv91a-SyYpMKrq43S1jhnocw6WzXKrjKCs3We2R1Nn3_ynHp8vh055A0UO_oboAdnG2Cd3nX_DkK_AaAqeTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844634938</pqid></control><display><type>article</type><title>Ideal topological Weyl complex phonons in two dimensions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yu, Wei-Wang ; Liu, Ying ; He, Zeqing ; Wang, Lirong ; Zhang, Xiaoming ; Liu, Guodong</creator><creatorcontrib>Yu, Wei-Wang ; Liu, Ying ; He, Zeqing ; Wang, Lirong ; Zhang, Xiaoming ; Liu, Guodong</creatorcontrib><description>The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective
k
·
p
model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding
topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu
2
Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking.
We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01621h</identifier><identifier>PMID: 37486143</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Broken symmetry ; First principles ; Nodes ; Phase transitions ; Phonons ; Symmetry ; Topology</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (3), p.268-2685</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-31b48855e0ad2974befbe6c79eb9ca58cc88ea056f6dfb609b7647d58aee6e123</cites><orcidid>0000-0001-9023-9266 ; 0000-0002-3173-6462 ; 0000-0003-4824-3688 ; 0000-0001-7265-8387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37486143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Wei-Wang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>He, Zeqing</creatorcontrib><creatorcontrib>Wang, Lirong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Guodong</creatorcontrib><title>Ideal topological Weyl complex phonons in two dimensions</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective
k
·
p
model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding
topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu
2
Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking.
We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.</description><subject>Broken symmetry</subject><subject>First principles</subject><subject>Nodes</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Symmetry</subject><subject>Topology</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEatKkaXKU-mODgR4UjyVNX11H29SkRfffm7k5wVMeeR8ej-9D6JTga4KpvCmo7jDhEVnsoTFhnIYSC7a_qxM-QkfOLTHGJCb0EI1owgQnjI6RmBWg6qA3nanNe6V9_QarOtCm6Wr4CrqFaU3rgqoN-k8TFFUDrav8zzE6KFXt4GT7TtDrw_1LOg3nT4-z9HYe6kjyPqQkZ0LEMWBVRDJhOZQ5cJ1IyKVWsdBaCFA45iUvypxjmSecJUUsFAAHEtEJutzM7az5GMD1WVM5DXWtWjCDyyLBCMMxxWt68Y8uzWBbv91a-SyYpMKrq43S1jhnocw6WzXKrjKCs3We2R1Nn3_ynHp8vh055A0UO_oboAdnG2Cd3nX_DkK_AaAqeTI</recordid><startdate>20230802</startdate><enddate>20230802</enddate><creator>Yu, Wei-Wang</creator><creator>Liu, Ying</creator><creator>He, Zeqing</creator><creator>Wang, Lirong</creator><creator>Zhang, Xiaoming</creator><creator>Liu, Guodong</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9023-9266</orcidid><orcidid>https://orcid.org/0000-0002-3173-6462</orcidid><orcidid>https://orcid.org/0000-0003-4824-3688</orcidid><orcidid>https://orcid.org/0000-0001-7265-8387</orcidid></search><sort><creationdate>20230802</creationdate><title>Ideal topological Weyl complex phonons in two dimensions</title><author>Yu, Wei-Wang ; Liu, Ying ; He, Zeqing ; Wang, Lirong ; Zhang, Xiaoming ; Liu, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-31b48855e0ad2974befbe6c79eb9ca58cc88ea056f6dfb609b7647d58aee6e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broken symmetry</topic><topic>First principles</topic><topic>Nodes</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wei-Wang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>He, Zeqing</creatorcontrib><creatorcontrib>Wang, Lirong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Guodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wei-Wang</au><au>Liu, Ying</au><au>He, Zeqing</au><au>Wang, Lirong</au><au>Zhang, Xiaoming</au><au>Liu, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ideal topological Weyl complex phonons in two dimensions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-08-02</date><risdate>2023</risdate><volume>25</volume><issue>3</issue><spage>268</spage><epage>2685</epage><pages>268-2685</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective
k
·
p
model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding
topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu
2
Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking.
We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37486143</pmid><doi>10.1039/d3cp01621h</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9023-9266</orcidid><orcidid>https://orcid.org/0000-0002-3173-6462</orcidid><orcidid>https://orcid.org/0000-0003-4824-3688</orcidid><orcidid>https://orcid.org/0000-0001-7265-8387</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (3), p.268-2685 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_pubmed_primary_37486143 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Broken symmetry First principles Nodes Phase transitions Phonons Symmetry Topology |
title | Ideal topological Weyl complex phonons in two dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ideal%20topological%20Weyl%20complex%20phonons%20in%20two%20dimensions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yu,%20Wei-Wang&rft.date=2023-08-02&rft.volume=25&rft.issue=3&rft.spage=268&rft.epage=2685&rft.pages=268-2685&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01621h&rft_dat=%3Cproquest_pubme%3E2841405302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844634938&rft_id=info:pmid/37486143&rfr_iscdi=true |