Ideal topological Weyl complex phonons in two dimensions

The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-08, Vol.25 (3), p.268-2685
Hauptverfasser: Yu, Wei-Wang, Liu, Ying, He, Zeqing, Wang, Lirong, Zhang, Xiaoming, Liu, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2685
container_issue 3
container_start_page 268
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Yu, Wei-Wang
Liu, Ying
He, Zeqing
Wang, Lirong
Zhang, Xiaoming
Liu, Guodong
description The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective k · p model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu 2 Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking. We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.
doi_str_mv 10.1039/d3cp01621h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37486143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841405302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-31b48855e0ad2974befbe6c79eb9ca58cc88ea056f6dfb609b7647d58aee6e123</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEatKkaXKU-mODgR4UjyVNX11H29SkRfffm7k5wVMeeR8ej-9D6JTga4KpvCmo7jDhEVnsoTFhnIYSC7a_qxM-QkfOLTHGJCb0EI1owgQnjI6RmBWg6qA3nanNe6V9_QarOtCm6Wr4CrqFaU3rgqoN-k8TFFUDrav8zzE6KFXt4GT7TtDrw_1LOg3nT4-z9HYe6kjyPqQkZ0LEMWBVRDJhOZQ5cJ1IyKVWsdBaCFA45iUvypxjmSecJUUsFAAHEtEJutzM7az5GMD1WVM5DXWtWjCDyyLBCMMxxWt68Y8uzWBbv91a-SyYpMKrq43S1jhnocw6WzXKrjKCs3We2R1Nn3_ynHp8vh055A0UO_oboAdnG2Cd3nX_DkK_AaAqeTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844634938</pqid></control><display><type>article</type><title>Ideal topological Weyl complex phonons in two dimensions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yu, Wei-Wang ; Liu, Ying ; He, Zeqing ; Wang, Lirong ; Zhang, Xiaoming ; Liu, Guodong</creator><creatorcontrib>Yu, Wei-Wang ; Liu, Ying ; He, Zeqing ; Wang, Lirong ; Zhang, Xiaoming ; Liu, Guodong</creatorcontrib><description>The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective k · p model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu 2 Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking. We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01621h</identifier><identifier>PMID: 37486143</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Broken symmetry ; First principles ; Nodes ; Phase transitions ; Phonons ; Symmetry ; Topology</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (3), p.268-2685</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-31b48855e0ad2974befbe6c79eb9ca58cc88ea056f6dfb609b7647d58aee6e123</cites><orcidid>0000-0001-9023-9266 ; 0000-0002-3173-6462 ; 0000-0003-4824-3688 ; 0000-0001-7265-8387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37486143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Wei-Wang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>He, Zeqing</creatorcontrib><creatorcontrib>Wang, Lirong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Guodong</creatorcontrib><title>Ideal topological Weyl complex phonons in two dimensions</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective k · p model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu 2 Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking. We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.</description><subject>Broken symmetry</subject><subject>First principles</subject><subject>Nodes</subject><subject>Phase transitions</subject><subject>Phonons</subject><subject>Symmetry</subject><subject>Topology</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEatKkaXKU-mODgR4UjyVNX11H29SkRfffm7k5wVMeeR8ej-9D6JTga4KpvCmo7jDhEVnsoTFhnIYSC7a_qxM-QkfOLTHGJCb0EI1owgQnjI6RmBWg6qA3nanNe6V9_QarOtCm6Wr4CrqFaU3rgqoN-k8TFFUDrav8zzE6KFXt4GT7TtDrw_1LOg3nT4-z9HYe6kjyPqQkZ0LEMWBVRDJhOZQ5cJ1IyKVWsdBaCFA45iUvypxjmSecJUUsFAAHEtEJutzM7az5GMD1WVM5DXWtWjCDyyLBCMMxxWt68Y8uzWBbv91a-SyYpMKrq43S1jhnocw6WzXKrjKCs3We2R1Nn3_ynHp8vh055A0UO_oboAdnG2Cd3nX_DkK_AaAqeTI</recordid><startdate>20230802</startdate><enddate>20230802</enddate><creator>Yu, Wei-Wang</creator><creator>Liu, Ying</creator><creator>He, Zeqing</creator><creator>Wang, Lirong</creator><creator>Zhang, Xiaoming</creator><creator>Liu, Guodong</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9023-9266</orcidid><orcidid>https://orcid.org/0000-0002-3173-6462</orcidid><orcidid>https://orcid.org/0000-0003-4824-3688</orcidid><orcidid>https://orcid.org/0000-0001-7265-8387</orcidid></search><sort><creationdate>20230802</creationdate><title>Ideal topological Weyl complex phonons in two dimensions</title><author>Yu, Wei-Wang ; Liu, Ying ; He, Zeqing ; Wang, Lirong ; Zhang, Xiaoming ; Liu, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-31b48855e0ad2974befbe6c79eb9ca58cc88ea056f6dfb609b7647d58aee6e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broken symmetry</topic><topic>First principles</topic><topic>Nodes</topic><topic>Phase transitions</topic><topic>Phonons</topic><topic>Symmetry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wei-Wang</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>He, Zeqing</creatorcontrib><creatorcontrib>Wang, Lirong</creatorcontrib><creatorcontrib>Zhang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Guodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wei-Wang</au><au>Liu, Ying</au><au>He, Zeqing</au><au>Wang, Lirong</au><au>Zhang, Xiaoming</au><au>Liu, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ideal topological Weyl complex phonons in two dimensions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-08-02</date><risdate>2023</risdate><volume>25</volume><issue>3</issue><spage>268</spage><epage>2685</epage><pages>268-2685</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective k · p model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu 2 Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking. We propose an approach that enforces an ideal Weyl complex in 2D spinless systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37486143</pmid><doi>10.1039/d3cp01621h</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9023-9266</orcidid><orcidid>https://orcid.org/0000-0002-3173-6462</orcidid><orcidid>https://orcid.org/0000-0003-4824-3688</orcidid><orcidid>https://orcid.org/0000-0001-7265-8387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-08, Vol.25 (3), p.268-2685
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_37486143
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Broken symmetry
First principles
Nodes
Phase transitions
Phonons
Symmetry
Topology
title Ideal topological Weyl complex phonons in two dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ideal%20topological%20Weyl%20complex%20phonons%20in%20two%20dimensions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yu,%20Wei-Wang&rft.date=2023-08-02&rft.volume=25&rft.issue=3&rft.spage=268&rft.epage=2685&rft.pages=268-2685&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01621h&rft_dat=%3Cproquest_pubme%3E2841405302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844634938&rft_id=info:pmid/37486143&rfr_iscdi=true