Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation
Organ-on-a-chip systems are rapidly advancing as a viable alternative to existing experimental models in respiratory research. To date, however, epithelial cell cultures within lung airway-on-a-chip devices have yet to demonstrate the presence of an epithelial glycocalyx, a thin layer of proteoglyca...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2023-08, Vol.23 (16), p.3671-3682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3682 |
---|---|
container_issue | 16 |
container_start_page | 3671 |
container_title | Lab on a chip |
container_volume | 23 |
creator | Park, Siwan Newton, Jeremy Hidjir, Tesnime Young, Edmond W. K |
description | Organ-on-a-chip systems are rapidly advancing as a viable alternative to existing experimental models in respiratory research. To date, however, epithelial cell cultures within lung airway-on-a-chip devices have yet to demonstrate the presence of an epithelial glycocalyx, a thin layer of proteoglycans, glycoproteins, and glycolipids known to play an important role in regulating epithelial function. Here, we demonstrate that an airway-on-a-chip device that incorporates bidirectional flow mimicking breathing cycles in combination with an ultra-thin matrix-derived membrane (UMM) layer can generate a glycocalyx layer comprised of heparan sulfate. Results with this device and airflow system showed dramatic differences of airway epithelial cell viability and expression of tight junctions, cilia, and mucus over a wide range of flow rates when cultured under oscillatory flow. More importantly, for the first time in a microfluidic organ-on-a-chip setting, we achieved the visualization of an airflow-induced epithelial glycocalyx layer. Our experiments highlight the importance of physiological mimicry in developing
in vitro
models, as bidirectional airflow showed more representative mucociliary differentiation compared to continuous unidirectional airflow. Thus, the lung airway-on-a-chip platform demonstrated in this study holds great potential as a lung epithelial barrier model for studying the mechanisms of various respiratory diseases and for testing the efficacy of therapeutic candidates in the presence of bidirectional airflow and the glycocalyx.
A unique lung airway-on-a-chip device combines an ultra-thin matrix-derived membrane with bidirectional airflow over a confluent airway epithelium, leading to presence of epithelial glycocalyx. |
doi_str_mv | 10.1039/d3lc00259d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37462986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847300746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a224260ebca15c52055358156cc1bda45cf6ee8ab2b72dd3cefff52396a505da3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMotlY37pWAGxFG85jMY6mtLyi40fWQSTJtSmZSkxnb-femtlZwlRzy5dzLOQCcY3SLEc3vJDUCIcJyeQCGOE5phHCWH-7veToAJ94vEMIsTrJjMKBpnJA8S4bAP2ipnRKttg03kGtXGbuCuoGma2YbveJ9ZJuIR2Kul3Cl2zmseev0OpLK6S8lYa3q0vFGQWW00K2HahmoIILhzPTCCm76NaysCx_DnFNwVHHj1dnuHIGPp8f38Us0fXt-Hd9PI0HTrI04ITFJkCoFx0wwghijLMMsEQKXksdMVIlSGS9JmRIpqVBVVTFC84QzxCSnI3C99V06-9kp3xa19kIZE3a1nS9IRnMSpyhhAb36hy5s50IiGyqkiFBILFA3W0o4671TVbF0uuauLzAqNlUUEzod_1QxCfDlzrIrayX36G_2AbjYAs6L_etfl_QbIZaPvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847300746</pqid></control><display><type>article</type><title>Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Park, Siwan ; Newton, Jeremy ; Hidjir, Tesnime ; Young, Edmond W. K</creator><creatorcontrib>Park, Siwan ; Newton, Jeremy ; Hidjir, Tesnime ; Young, Edmond W. K</creatorcontrib><description>Organ-on-a-chip systems are rapidly advancing as a viable alternative to existing experimental models in respiratory research. To date, however, epithelial cell cultures within lung airway-on-a-chip devices have yet to demonstrate the presence of an epithelial glycocalyx, a thin layer of proteoglycans, glycoproteins, and glycolipids known to play an important role in regulating epithelial function. Here, we demonstrate that an airway-on-a-chip device that incorporates bidirectional flow mimicking breathing cycles in combination with an ultra-thin matrix-derived membrane (UMM) layer can generate a glycocalyx layer comprised of heparan sulfate. Results with this device and airflow system showed dramatic differences of airway epithelial cell viability and expression of tight junctions, cilia, and mucus over a wide range of flow rates when cultured under oscillatory flow. More importantly, for the first time in a microfluidic organ-on-a-chip setting, we achieved the visualization of an airflow-induced epithelial glycocalyx layer. Our experiments highlight the importance of physiological mimicry in developing
in vitro
models, as bidirectional airflow showed more representative mucociliary differentiation compared to continuous unidirectional airflow. Thus, the lung airway-on-a-chip platform demonstrated in this study holds great potential as a lung epithelial barrier model for studying the mechanisms of various respiratory diseases and for testing the efficacy of therapeutic candidates in the presence of bidirectional airflow and the glycocalyx.
A unique lung airway-on-a-chip device combines an ultra-thin matrix-derived membrane with bidirectional airflow over a confluent airway epithelium, leading to presence of epithelial glycocalyx.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00259d</identifier><identifier>PMID: 37462986</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Air flow ; Epithelial Cells ; Epithelium ; Glycocalyx - metabolism ; Glycoproteins ; Heparan sulfate ; Lab-On-A-Chip Devices ; Lung ; Lungs ; Membranes ; Mimicry ; Oscillating flow ; Proteoglycans ; Respiratory diseases</subject><ispartof>Lab on a chip, 2023-08, Vol.23 (16), p.3671-3682</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a224260ebca15c52055358156cc1bda45cf6ee8ab2b72dd3cefff52396a505da3</citedby><cites>FETCH-LOGICAL-c378t-a224260ebca15c52055358156cc1bda45cf6ee8ab2b72dd3cefff52396a505da3</cites><orcidid>0000-0002-1274-5478 ; 0000-0002-3691-5152 ; 0000-0001-7754-2180 ; 0009-0000-3470-096X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37462986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Siwan</creatorcontrib><creatorcontrib>Newton, Jeremy</creatorcontrib><creatorcontrib>Hidjir, Tesnime</creatorcontrib><creatorcontrib>Young, Edmond W. K</creatorcontrib><title>Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Organ-on-a-chip systems are rapidly advancing as a viable alternative to existing experimental models in respiratory research. To date, however, epithelial cell cultures within lung airway-on-a-chip devices have yet to demonstrate the presence of an epithelial glycocalyx, a thin layer of proteoglycans, glycoproteins, and glycolipids known to play an important role in regulating epithelial function. Here, we demonstrate that an airway-on-a-chip device that incorporates bidirectional flow mimicking breathing cycles in combination with an ultra-thin matrix-derived membrane (UMM) layer can generate a glycocalyx layer comprised of heparan sulfate. Results with this device and airflow system showed dramatic differences of airway epithelial cell viability and expression of tight junctions, cilia, and mucus over a wide range of flow rates when cultured under oscillatory flow. More importantly, for the first time in a microfluidic organ-on-a-chip setting, we achieved the visualization of an airflow-induced epithelial glycocalyx layer. Our experiments highlight the importance of physiological mimicry in developing
in vitro
models, as bidirectional airflow showed more representative mucociliary differentiation compared to continuous unidirectional airflow. Thus, the lung airway-on-a-chip platform demonstrated in this study holds great potential as a lung epithelial barrier model for studying the mechanisms of various respiratory diseases and for testing the efficacy of therapeutic candidates in the presence of bidirectional airflow and the glycocalyx.
A unique lung airway-on-a-chip device combines an ultra-thin matrix-derived membrane with bidirectional airflow over a confluent airway epithelium, leading to presence of epithelial glycocalyx.</description><subject>Air flow</subject><subject>Epithelial Cells</subject><subject>Epithelium</subject><subject>Glycocalyx - metabolism</subject><subject>Glycoproteins</subject><subject>Heparan sulfate</subject><subject>Lab-On-A-Chip Devices</subject><subject>Lung</subject><subject>Lungs</subject><subject>Membranes</subject><subject>Mimicry</subject><subject>Oscillating flow</subject><subject>Proteoglycans</subject><subject>Respiratory diseases</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtLAzEUhYMotlY37pWAGxFG85jMY6mtLyi40fWQSTJtSmZSkxnb-femtlZwlRzy5dzLOQCcY3SLEc3vJDUCIcJyeQCGOE5phHCWH-7veToAJ94vEMIsTrJjMKBpnJA8S4bAP2ipnRKttg03kGtXGbuCuoGma2YbveJ9ZJuIR2Kul3Cl2zmseev0OpLK6S8lYa3q0vFGQWW00K2HahmoIILhzPTCCm76NaysCx_DnFNwVHHj1dnuHIGPp8f38Us0fXt-Hd9PI0HTrI04ITFJkCoFx0wwghijLMMsEQKXksdMVIlSGS9JmRIpqVBVVTFC84QzxCSnI3C99V06-9kp3xa19kIZE3a1nS9IRnMSpyhhAb36hy5s50IiGyqkiFBILFA3W0o4671TVbF0uuauLzAqNlUUEzod_1QxCfDlzrIrayX36G_2AbjYAs6L_etfl_QbIZaPvQ</recordid><startdate>20230808</startdate><enddate>20230808</enddate><creator>Park, Siwan</creator><creator>Newton, Jeremy</creator><creator>Hidjir, Tesnime</creator><creator>Young, Edmond W. K</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1274-5478</orcidid><orcidid>https://orcid.org/0000-0002-3691-5152</orcidid><orcidid>https://orcid.org/0000-0001-7754-2180</orcidid><orcidid>https://orcid.org/0009-0000-3470-096X</orcidid></search><sort><creationdate>20230808</creationdate><title>Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation</title><author>Park, Siwan ; Newton, Jeremy ; Hidjir, Tesnime ; Young, Edmond W. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a224260ebca15c52055358156cc1bda45cf6ee8ab2b72dd3cefff52396a505da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air flow</topic><topic>Epithelial Cells</topic><topic>Epithelium</topic><topic>Glycocalyx - metabolism</topic><topic>Glycoproteins</topic><topic>Heparan sulfate</topic><topic>Lab-On-A-Chip Devices</topic><topic>Lung</topic><topic>Lungs</topic><topic>Membranes</topic><topic>Mimicry</topic><topic>Oscillating flow</topic><topic>Proteoglycans</topic><topic>Respiratory diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Siwan</creatorcontrib><creatorcontrib>Newton, Jeremy</creatorcontrib><creatorcontrib>Hidjir, Tesnime</creatorcontrib><creatorcontrib>Young, Edmond W. K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Siwan</au><au>Newton, Jeremy</au><au>Hidjir, Tesnime</au><au>Young, Edmond W. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-08-08</date><risdate>2023</risdate><volume>23</volume><issue>16</issue><spage>3671</spage><epage>3682</epage><pages>3671-3682</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Organ-on-a-chip systems are rapidly advancing as a viable alternative to existing experimental models in respiratory research. To date, however, epithelial cell cultures within lung airway-on-a-chip devices have yet to demonstrate the presence of an epithelial glycocalyx, a thin layer of proteoglycans, glycoproteins, and glycolipids known to play an important role in regulating epithelial function. Here, we demonstrate that an airway-on-a-chip device that incorporates bidirectional flow mimicking breathing cycles in combination with an ultra-thin matrix-derived membrane (UMM) layer can generate a glycocalyx layer comprised of heparan sulfate. Results with this device and airflow system showed dramatic differences of airway epithelial cell viability and expression of tight junctions, cilia, and mucus over a wide range of flow rates when cultured under oscillatory flow. More importantly, for the first time in a microfluidic organ-on-a-chip setting, we achieved the visualization of an airflow-induced epithelial glycocalyx layer. Our experiments highlight the importance of physiological mimicry in developing
in vitro
models, as bidirectional airflow showed more representative mucociliary differentiation compared to continuous unidirectional airflow. Thus, the lung airway-on-a-chip platform demonstrated in this study holds great potential as a lung epithelial barrier model for studying the mechanisms of various respiratory diseases and for testing the efficacy of therapeutic candidates in the presence of bidirectional airflow and the glycocalyx.
A unique lung airway-on-a-chip device combines an ultra-thin matrix-derived membrane with bidirectional airflow over a confluent airway epithelium, leading to presence of epithelial glycocalyx.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37462986</pmid><doi>10.1039/d3lc00259d</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1274-5478</orcidid><orcidid>https://orcid.org/0000-0002-3691-5152</orcidid><orcidid>https://orcid.org/0000-0001-7754-2180</orcidid><orcidid>https://orcid.org/0009-0000-3470-096X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2023-08, Vol.23 (16), p.3671-3682 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_pubmed_primary_37462986 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Air flow Epithelial Cells Epithelium Glycocalyx - metabolism Glycoproteins Heparan sulfate Lab-On-A-Chip Devices Lung Lungs Membranes Mimicry Oscillating flow Proteoglycans Respiratory diseases |
title | Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20airflow%20in%20lung%20airway-on-a-chip%20with%20matrix-derived%20membrane%20elicits%20epithelial%20glycocalyx%20formation&rft.jtitle=Lab%20on%20a%20chip&rft.au=Park,%20Siwan&rft.date=2023-08-08&rft.volume=23&rft.issue=16&rft.spage=3671&rft.epage=3682&rft.pages=3671-3682&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00259d&rft_dat=%3Cproquest_pubme%3E2847300746%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847300746&rft_id=info:pmid/37462986&rfr_iscdi=true |