HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection
As a prerequisite step of scene text reading, scene text detection is known as a challenging task due to natural scene text diversity and variability. Most existing methods either adopt bottom-up sub-text component extraction or focus on top-down text contour regression. From a hybrid perspective, w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.PP, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | PP |
creator | Bi, Hengyue Xu, Canhui Shi, Cao Liu, Guozhu Zhang, Honghong Li, Yuteng Dong, Junyu |
description | As a prerequisite step of scene text reading, scene text detection is known as a challenging task due to natural scene text diversity and variability. Most existing methods either adopt bottom-up sub-text component extraction or focus on top-down text contour regression. From a hybrid perspective, we explore hierarchical text instance-level and component-level representation for arbitrarily-shaped scene text detection. In this work, we propose a novel Hierarchical Graph Reasoning Network (HGR-Net), which consists of a Text Feature Extraction Network (TFEN) and a Text Relation Learner Network (TRLN). TFEN adaptively learns multi-grained text candidates based on shared convolutional feature maps, including instance-level text contours and component-level quadrangles. In TRLN, an inter-text graph is constructed to explore global contextual information with position-awareness between text instances, and an intra-text graph is designed to estimate geometric attributes for establishing component-level linkages. Next, we bridge the cross-feed interaction between instance-level and component-level, and it further achieves hierarchical relational reasoning by learning complementary graph embeddings across levels. Experiments conducted on three publicly available benchmarks SCUT-CTW1500, Total-Text, and ICDAR15 have demonstrated that HGR-Net achieves state-of-the-art performance on arbitrary orientation and arbitrary shape scene text detection. |
doi_str_mv | 10.1109/TIP.2023.3294822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37459262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10185179</ieee_id><sourcerecordid>2839253140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-33d2accb5687bf57b20587986f2f85d8de29981e697bb83531eeea648fafdf133</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMoPqp7FyIBN26m5jmTuCtVW6Go1Op2yGRu7NR2piZT1H9vpFXE1Q3c833cHISOKelSSvTF5PahywjjXc60UIxtoX2qBU0IEWw7vonMkowKvYcOQpgRQoWk6S7a45mQmqVsHz0PB-PkDtpLPKzAG2-nlTVzPPBmOcVjMKGpq_oFR-K98a_YNR73fFG1Ef3Ej1OzBPxooQY8gY8WX0ELtq2a-hDtODMPcLSZHfR0cz3pD5PR_eC23xsllgvVJpyXzFhbyFRlhZNZwYhUmVapY07JUpXAtFYUUp0VheKSUwAwqVDOuNJRzjvofN279M3bCkKbL6pgYT43NTSrkDPFNYsxQSJ69g-dNStfx-siFfeaqFRFiqwp65sQPLh86atF_GxOSf7tPI_O82_n-cZ5jJxuilfFAsrfwI_kCJysgSpe_6ePKkkzzb8AiX-D4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840390868</pqid></control><display><type>article</type><title>HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Bi, Hengyue ; Xu, Canhui ; Shi, Cao ; Liu, Guozhu ; Zhang, Honghong ; Li, Yuteng ; Dong, Junyu</creator><creatorcontrib>Bi, Hengyue ; Xu, Canhui ; Shi, Cao ; Liu, Guozhu ; Zhang, Honghong ; Li, Yuteng ; Dong, Junyu</creatorcontrib><description>As a prerequisite step of scene text reading, scene text detection is known as a challenging task due to natural scene text diversity and variability. Most existing methods either adopt bottom-up sub-text component extraction or focus on top-down text contour regression. From a hybrid perspective, we explore hierarchical text instance-level and component-level representation for arbitrarily-shaped scene text detection. In this work, we propose a novel Hierarchical Graph Reasoning Network (HGR-Net), which consists of a Text Feature Extraction Network (TFEN) and a Text Relation Learner Network (TRLN). TFEN adaptively learns multi-grained text candidates based on shared convolutional feature maps, including instance-level text contours and component-level quadrangles. In TRLN, an inter-text graph is constructed to explore global contextual information with position-awareness between text instances, and an intra-text graph is designed to estimate geometric attributes for establishing component-level linkages. Next, we bridge the cross-feed interaction between instance-level and component-level, and it further achieves hierarchical relational reasoning by learning complementary graph embeddings across levels. Experiments conducted on three publicly available benchmarks SCUT-CTW1500, Total-Text, and ICDAR15 have demonstrated that HGR-Net achieves state-of-the-art performance on arbitrary orientation and arbitrary shape scene text detection.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3294822</identifier><identifier>PMID: 37459262</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>arbitrary shape text ; Cognition ; Couplings ; Feature extraction ; Feature maps ; Graph Convolutional Network ; hierarchical relation modeling ; Layout ; Proposals ; Reasoning ; Scene text detection ; Shape ; Text detection</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-33d2accb5687bf57b20587986f2f85d8de29981e697bb83531eeea648fafdf133</citedby><cites>FETCH-LOGICAL-c348t-33d2accb5687bf57b20587986f2f85d8de29981e697bb83531eeea648fafdf133</cites><orcidid>0000-0003-2748-5557 ; 0000-0001-7012-2087 ; 0000-0002-4191-3186 ; 0000-0002-1578-3576 ; 0000-0002-8880-4526 ; 0000-0002-7169-7760 ; 0000-0002-9907-6747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10185179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10185179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37459262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Hengyue</creatorcontrib><creatorcontrib>Xu, Canhui</creatorcontrib><creatorcontrib>Shi, Cao</creatorcontrib><creatorcontrib>Liu, Guozhu</creatorcontrib><creatorcontrib>Zhang, Honghong</creatorcontrib><creatorcontrib>Li, Yuteng</creatorcontrib><creatorcontrib>Dong, Junyu</creatorcontrib><title>HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>As a prerequisite step of scene text reading, scene text detection is known as a challenging task due to natural scene text diversity and variability. Most existing methods either adopt bottom-up sub-text component extraction or focus on top-down text contour regression. From a hybrid perspective, we explore hierarchical text instance-level and component-level representation for arbitrarily-shaped scene text detection. In this work, we propose a novel Hierarchical Graph Reasoning Network (HGR-Net), which consists of a Text Feature Extraction Network (TFEN) and a Text Relation Learner Network (TRLN). TFEN adaptively learns multi-grained text candidates based on shared convolutional feature maps, including instance-level text contours and component-level quadrangles. In TRLN, an inter-text graph is constructed to explore global contextual information with position-awareness between text instances, and an intra-text graph is designed to estimate geometric attributes for establishing component-level linkages. Next, we bridge the cross-feed interaction between instance-level and component-level, and it further achieves hierarchical relational reasoning by learning complementary graph embeddings across levels. Experiments conducted on three publicly available benchmarks SCUT-CTW1500, Total-Text, and ICDAR15 have demonstrated that HGR-Net achieves state-of-the-art performance on arbitrary orientation and arbitrary shape scene text detection.</description><subject>arbitrary shape text</subject><subject>Cognition</subject><subject>Couplings</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Graph Convolutional Network</subject><subject>hierarchical relation modeling</subject><subject>Layout</subject><subject>Proposals</subject><subject>Reasoning</subject><subject>Scene text detection</subject><subject>Shape</subject><subject>Text detection</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEURoMoPqp7FyIBN26m5jmTuCtVW6Go1Op2yGRu7NR2piZT1H9vpFXE1Q3c833cHISOKelSSvTF5PahywjjXc60UIxtoX2qBU0IEWw7vonMkowKvYcOQpgRQoWk6S7a45mQmqVsHz0PB-PkDtpLPKzAG2-nlTVzPPBmOcVjMKGpq_oFR-K98a_YNR73fFG1Ef3Ej1OzBPxooQY8gY8WX0ELtq2a-hDtODMPcLSZHfR0cz3pD5PR_eC23xsllgvVJpyXzFhbyFRlhZNZwYhUmVapY07JUpXAtFYUUp0VheKSUwAwqVDOuNJRzjvofN279M3bCkKbL6pgYT43NTSrkDPFNYsxQSJ69g-dNStfx-siFfeaqFRFiqwp65sQPLh86atF_GxOSf7tPI_O82_n-cZ5jJxuilfFAsrfwI_kCJysgSpe_6ePKkkzzb8AiX-D4A</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bi, Hengyue</creator><creator>Xu, Canhui</creator><creator>Shi, Cao</creator><creator>Liu, Guozhu</creator><creator>Zhang, Honghong</creator><creator>Li, Yuteng</creator><creator>Dong, Junyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2748-5557</orcidid><orcidid>https://orcid.org/0000-0001-7012-2087</orcidid><orcidid>https://orcid.org/0000-0002-4191-3186</orcidid><orcidid>https://orcid.org/0000-0002-1578-3576</orcidid><orcidid>https://orcid.org/0000-0002-8880-4526</orcidid><orcidid>https://orcid.org/0000-0002-7169-7760</orcidid><orcidid>https://orcid.org/0000-0002-9907-6747</orcidid></search><sort><creationdate>20230101</creationdate><title>HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection</title><author>Bi, Hengyue ; Xu, Canhui ; Shi, Cao ; Liu, Guozhu ; Zhang, Honghong ; Li, Yuteng ; Dong, Junyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-33d2accb5687bf57b20587986f2f85d8de29981e697bb83531eeea648fafdf133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>arbitrary shape text</topic><topic>Cognition</topic><topic>Couplings</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Graph Convolutional Network</topic><topic>hierarchical relation modeling</topic><topic>Layout</topic><topic>Proposals</topic><topic>Reasoning</topic><topic>Scene text detection</topic><topic>Shape</topic><topic>Text detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Hengyue</creatorcontrib><creatorcontrib>Xu, Canhui</creatorcontrib><creatorcontrib>Shi, Cao</creatorcontrib><creatorcontrib>Liu, Guozhu</creatorcontrib><creatorcontrib>Zhang, Honghong</creatorcontrib><creatorcontrib>Li, Yuteng</creatorcontrib><creatorcontrib>Dong, Junyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bi, Hengyue</au><au>Xu, Canhui</au><au>Shi, Cao</au><au>Liu, Guozhu</au><au>Zhang, Honghong</au><au>Li, Yuteng</au><au>Dong, Junyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>As a prerequisite step of scene text reading, scene text detection is known as a challenging task due to natural scene text diversity and variability. Most existing methods either adopt bottom-up sub-text component extraction or focus on top-down text contour regression. From a hybrid perspective, we explore hierarchical text instance-level and component-level representation for arbitrarily-shaped scene text detection. In this work, we propose a novel Hierarchical Graph Reasoning Network (HGR-Net), which consists of a Text Feature Extraction Network (TFEN) and a Text Relation Learner Network (TRLN). TFEN adaptively learns multi-grained text candidates based on shared convolutional feature maps, including instance-level text contours and component-level quadrangles. In TRLN, an inter-text graph is constructed to explore global contextual information with position-awareness between text instances, and an intra-text graph is designed to estimate geometric attributes for establishing component-level linkages. Next, we bridge the cross-feed interaction between instance-level and component-level, and it further achieves hierarchical relational reasoning by learning complementary graph embeddings across levels. Experiments conducted on three publicly available benchmarks SCUT-CTW1500, Total-Text, and ICDAR15 have demonstrated that HGR-Net achieves state-of-the-art performance on arbitrary orientation and arbitrary shape scene text detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37459262</pmid><doi>10.1109/TIP.2023.3294822</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2748-5557</orcidid><orcidid>https://orcid.org/0000-0001-7012-2087</orcidid><orcidid>https://orcid.org/0000-0002-4191-3186</orcidid><orcidid>https://orcid.org/0000-0002-1578-3576</orcidid><orcidid>https://orcid.org/0000-0002-8880-4526</orcidid><orcidid>https://orcid.org/0000-0002-7169-7760</orcidid><orcidid>https://orcid.org/0000-0002-9907-6747</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.PP, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_37459262 |
source | IEEE Electronic Library (IEL) |
subjects | arbitrary shape text Cognition Couplings Feature extraction Feature maps Graph Convolutional Network hierarchical relation modeling Layout Proposals Reasoning Scene text detection Shape Text detection |
title | HGR-Net: Hierarchical Graph Reasoning Network for Arbitrary Shape Scene Text Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HGR-Net:%20Hierarchical%20Graph%20Reasoning%20Network%20for%20Arbitrary%20Shape%20Scene%20Text%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Bi,%20Hengyue&rft.date=2023-01-01&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3294822&rft_dat=%3Cproquest_RIE%3E2839253140%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840390868&rft_id=info:pmid/37459262&rft_ieee_id=10185179&rfr_iscdi=true |