Application of HIPEC simulations for optimizing treatment delivery strategies
Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the...
Gespeichert in:
Veröffentlicht in: | International journal of hyperthermia 2023-12, Vol.40 (1), p.2218627-2218627 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2218627 |
---|---|
container_issue | 1 |
container_start_page | 2218627 |
container_title | International journal of hyperthermia |
container_volume | 40 |
creator | Löke, Daan R. Kok, H. Petra Helderman, Roxan F. C. P. A Bokan, Bella Franken, Nicolaas A. P. Oei, Arlene L. Tuynman, Jurriaan B. Tanis, Pieter J. Crezee, Johannes |
description | Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions.
For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated.
Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with
values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage.
The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC. |
doi_str_mv | 10.1080/02656736.2023.2218627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37455017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_82b13eeeab604bdaaa4d2a2d094dad54</doaj_id><sourcerecordid>2838646905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-348f660c9484c1023f0e78dd945a9a850a640c5322f94dad4941815752fe70d23</originalsourceid><addsrcrecordid>eNp9kUtvEzEURi1ERUPhJ4BmyWaC3_bsqKJCIxWVBaytGz8iVzPjwXao0l_fyaNdsrJ0de732T4IfSJ4SbDGXzGVQiomlxRTtqSUaEnVG7QgXPJWEKHeosWBaQ_QJXpfygPGmAuq3qFLprgQmKgF-nk9TX20UGMamxSa2_Wvm1VT4rDrj7PShJSbNNU4xKc4bpuaPdTBj7Vxvo__fN43pWaofht9-YAuAvTFfzyfV-jP95vfq9v27v7HenV911quutoyroOU2HZcc0vm-wfslXau4wI60AKD5NgKRmnouAPHO070_CRBg1fYUXaF1qdcl-DBTDkOkPcmQTTHQcpbA7lG23uj6YYw7z1sJOYbBwDcUaAOH5MFn7O-nLKmnP7ufKlmiMX6vofRp10xVDMtueywmFFxQm1OpWQfXqsJNgcr5sWKOVgxZyvz3udzxW4zePe69aJhBr6dgDjO3z3AY8q9MxX2fcohw2hjMez_Hc9fc5tU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838646905</pqid></control><display><type>article</type><title>Application of HIPEC simulations for optimizing treatment delivery strategies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Taylor & Francis (Open Access Collection)</source><creator>Löke, Daan R. ; Kok, H. Petra ; Helderman, Roxan F. C. P. A ; Bokan, Bella ; Franken, Nicolaas A. P. ; Oei, Arlene L. ; Tuynman, Jurriaan B. ; Tanis, Pieter J. ; Crezee, Johannes</creator><creatorcontrib>Löke, Daan R. ; Kok, H. Petra ; Helderman, Roxan F. C. P. A ; Bokan, Bella ; Franken, Nicolaas A. P. ; Oei, Arlene L. ; Tuynman, Jurriaan B. ; Tanis, Pieter J. ; Crezee, Johannes</creatorcontrib><description>Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions.
For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated.
Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with
values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage.
The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656736.2023.2218627</identifier><identifier>PMID: 37455017</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>cancer biology ; Chemotherapy, Cancer, Regional Perfusion - methods ; Combined Modality Therapy ; computational fluid dynamics(CFD) ; computational modeling ; Cytoreduction Surgical Procedures - methods ; drug dynamics ; Humans ; Hyperthermia, Induced - methods ; Hyperthermic Intraperitoneal Chemotherapy ; Hyperthermic intrapertioneal chemotherapy (HIPEC) ; Peritoneal Neoplasms - drug therapy ; Peritoneal Neoplasms - surgery ; treatment planning software</subject><ispartof>International journal of hyperthermia, 2023-12, Vol.40 (1), p.2218627-2218627</ispartof><rights>2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-348f660c9484c1023f0e78dd945a9a850a640c5322f94dad4941815752fe70d23</citedby><cites>FETCH-LOGICAL-c479t-348f660c9484c1023f0e78dd945a9a850a640c5322f94dad4941815752fe70d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656736.2023.2218627$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656736.2023.2218627$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37455017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Löke, Daan R.</creatorcontrib><creatorcontrib>Kok, H. Petra</creatorcontrib><creatorcontrib>Helderman, Roxan F. C. P. A</creatorcontrib><creatorcontrib>Bokan, Bella</creatorcontrib><creatorcontrib>Franken, Nicolaas A. P.</creatorcontrib><creatorcontrib>Oei, Arlene L.</creatorcontrib><creatorcontrib>Tuynman, Jurriaan B.</creatorcontrib><creatorcontrib>Tanis, Pieter J.</creatorcontrib><creatorcontrib>Crezee, Johannes</creatorcontrib><title>Application of HIPEC simulations for optimizing treatment delivery strategies</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions.
For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated.
Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with
values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage.
The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.</description><subject>cancer biology</subject><subject>Chemotherapy, Cancer, Regional Perfusion - methods</subject><subject>Combined Modality Therapy</subject><subject>computational fluid dynamics(CFD)</subject><subject>computational modeling</subject><subject>Cytoreduction Surgical Procedures - methods</subject><subject>drug dynamics</subject><subject>Humans</subject><subject>Hyperthermia, Induced - methods</subject><subject>Hyperthermic Intraperitoneal Chemotherapy</subject><subject>Hyperthermic intrapertioneal chemotherapy (HIPEC)</subject><subject>Peritoneal Neoplasms - drug therapy</subject><subject>Peritoneal Neoplasms - surgery</subject><subject>treatment planning software</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtvEzEURi1ERUPhJ4BmyWaC3_bsqKJCIxWVBaytGz8iVzPjwXao0l_fyaNdsrJ0de732T4IfSJ4SbDGXzGVQiomlxRTtqSUaEnVG7QgXPJWEKHeosWBaQ_QJXpfygPGmAuq3qFLprgQmKgF-nk9TX20UGMamxSa2_Wvm1VT4rDrj7PShJSbNNU4xKc4bpuaPdTBj7Vxvo__fN43pWaofht9-YAuAvTFfzyfV-jP95vfq9v27v7HenV911quutoyroOU2HZcc0vm-wfslXau4wI60AKD5NgKRmnouAPHO070_CRBg1fYUXaF1qdcl-DBTDkOkPcmQTTHQcpbA7lG23uj6YYw7z1sJOYbBwDcUaAOH5MFn7O-nLKmnP7ufKlmiMX6vofRp10xVDMtueywmFFxQm1OpWQfXqsJNgcr5sWKOVgxZyvz3udzxW4zePe69aJhBr6dgDjO3z3AY8q9MxX2fcohw2hjMez_Hc9fc5tU</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Löke, Daan R.</creator><creator>Kok, H. Petra</creator><creator>Helderman, Roxan F. C. P. A</creator><creator>Bokan, Bella</creator><creator>Franken, Nicolaas A. P.</creator><creator>Oei, Arlene L.</creator><creator>Tuynman, Jurriaan B.</creator><creator>Tanis, Pieter J.</creator><creator>Crezee, Johannes</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231231</creationdate><title>Application of HIPEC simulations for optimizing treatment delivery strategies</title><author>Löke, Daan R. ; Kok, H. Petra ; Helderman, Roxan F. C. P. A ; Bokan, Bella ; Franken, Nicolaas A. P. ; Oei, Arlene L. ; Tuynman, Jurriaan B. ; Tanis, Pieter J. ; Crezee, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-348f660c9484c1023f0e78dd945a9a850a640c5322f94dad4941815752fe70d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cancer biology</topic><topic>Chemotherapy, Cancer, Regional Perfusion - methods</topic><topic>Combined Modality Therapy</topic><topic>computational fluid dynamics(CFD)</topic><topic>computational modeling</topic><topic>Cytoreduction Surgical Procedures - methods</topic><topic>drug dynamics</topic><topic>Humans</topic><topic>Hyperthermia, Induced - methods</topic><topic>Hyperthermic Intraperitoneal Chemotherapy</topic><topic>Hyperthermic intrapertioneal chemotherapy (HIPEC)</topic><topic>Peritoneal Neoplasms - drug therapy</topic><topic>Peritoneal Neoplasms - surgery</topic><topic>treatment planning software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Löke, Daan R.</creatorcontrib><creatorcontrib>Kok, H. Petra</creatorcontrib><creatorcontrib>Helderman, Roxan F. C. P. A</creatorcontrib><creatorcontrib>Bokan, Bella</creatorcontrib><creatorcontrib>Franken, Nicolaas A. P.</creatorcontrib><creatorcontrib>Oei, Arlene L.</creatorcontrib><creatorcontrib>Tuynman, Jurriaan B.</creatorcontrib><creatorcontrib>Tanis, Pieter J.</creatorcontrib><creatorcontrib>Crezee, Johannes</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Löke, Daan R.</au><au>Kok, H. Petra</au><au>Helderman, Roxan F. C. P. A</au><au>Bokan, Bella</au><au>Franken, Nicolaas A. P.</au><au>Oei, Arlene L.</au><au>Tuynman, Jurriaan B.</au><au>Tanis, Pieter J.</au><au>Crezee, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of HIPEC simulations for optimizing treatment delivery strategies</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2023-12-31</date><risdate>2023</risdate><volume>40</volume><issue>1</issue><spage>2218627</spage><epage>2218627</epage><pages>2218627-2218627</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>Hyperthermic IntraPEritoneal Chemotherapy (HIPEC) aims to treat microscopic disease left after CytoReductive Surgery (CRS). Thermal enhancement depends on the temperatures achieved. Since the location of microscopic disease is unknown, a homogeneous treatment is required to completely eradicate the disease while limiting side effects. To ensure homogeneous delivery, treatment planning software has been developed. This study compares simulation results with clinical data and evaluates the impact of nine treatment strategies on thermal and drug distributions.
For comparison with clinical data, three treatment strategies were simulated with different flow rates (1600-1800mL/min) and inflow temperatures (41.6-43.6 °C). Six additional treatment strategies were simulated, varying the number of inflow catheters, flow direction, and using step-up and step-down heating strategies. Thermal homogeneity and the risk of thermal injury were evaluated.
Simulated temperature distributions, core body temperatures, and systemic chemotherapeutic concentrations compared well with literature values. Treatment strategy was found to have a strong influence on the distributions. Additional inflow catheters could improve thermal distributions, provided flow rates are kept sufficiently high (>500 mL/min) for each catheter. High flow rates (1800 mL/min) combined with high inflow temperatures (43.6 °C) could lead to thermal damage, with
values of up to 27 min. Step-up and step-down heating strategies allow for high temperatures with reduced risk of thermal damage.
The planning software provides valuable insight into the effects of different treatment strategies on peritoneal distributions. These strategies are designed to provide homogeneous treatment delivery while limiting thermal injury to normal tissue, thereby optimizing the effectiveness of HIPEC.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>37455017</pmid><doi>10.1080/02656736.2023.2218627</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-6736 |
ispartof | International journal of hyperthermia, 2023-12, Vol.40 (1), p.2218627-2218627 |
issn | 0265-6736 1464-5157 |
language | eng |
recordid | cdi_pubmed_primary_37455017 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Taylor & Francis (Open Access Collection) |
subjects | cancer biology Chemotherapy, Cancer, Regional Perfusion - methods Combined Modality Therapy computational fluid dynamics(CFD) computational modeling Cytoreduction Surgical Procedures - methods drug dynamics Humans Hyperthermia, Induced - methods Hyperthermic Intraperitoneal Chemotherapy Hyperthermic intrapertioneal chemotherapy (HIPEC) Peritoneal Neoplasms - drug therapy Peritoneal Neoplasms - surgery treatment planning software |
title | Application of HIPEC simulations for optimizing treatment delivery strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20HIPEC%20simulations%20for%20optimizing%20treatment%20delivery%20strategies&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=L%C3%B6ke,%20Daan%20R.&rft.date=2023-12-31&rft.volume=40&rft.issue=1&rft.spage=2218627&rft.epage=2218627&rft.pages=2218627-2218627&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656736.2023.2218627&rft_dat=%3Cproquest_pubme%3E2838646905%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838646905&rft_id=info:pmid/37455017&rft_doaj_id=oai_doaj_org_article_82b13eeeab604bdaaa4d2a2d094dad54&rfr_iscdi=true |