Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications
The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementa...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-06, Vol.28 (6), p.3361-3370 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3370 |
---|---|
container_issue | 6 |
container_start_page | 3361 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Ali, Muhammad Umair Zafar, Amad Kallu, Karam Dad Masood, Haris Mannan, Malik Muhammad Naeem Ibrahim, Malik Muhammad Kim, Sangil Khan, Muhammad Attique |
description | The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance ( p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications. |
doi_str_mv | 10.1109/JBHI.2023.3294586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_37436864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10179221</ieee_id><sourcerecordid>2836878069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c692cab3403c9c09c9d382806e6c4626497f8fa167f1898d669c7033a061b2e43</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMoOtQfIIgEvPGmM19Lk8utbG4yFJxehyw9xc6unUmL7N_buk3E3JwQnvNwcl6ErijpU0r0_eNoOuszwnifMy0GSh6hHqNSRYwRdXy4Uy3O0GUIK9Ie1T5peYrOeCy4VFL0UJZU3kNh67wqo0le1OCjkQ2Q4uTdliUU2JYpnoCtGw94AQW4DsUTb9fwVfkPnFUeT7dLn6d4PH6IsqfZywKPkhkebjZF7n7M4QKdZLYIcLmv5-htMn5NptH8-WGWDOeR4wNSR05q5uySC8KddkQ7nXLFFJEgnZBMCh1nKrNUxhlVWqVSahcTzi2RdMlA8HN0t_NufPXZQKjNOg8OisKWUDXBMNX-O26FukVv_6GrqvFlO53hRA6EFIJ2QrqjnK9C8JCZjc_X1m8NJabLwXQ5mC4Hs8-h7bnZm5vlGtLfjsPWW-B6B-QA8EdIY80Y5d9HRok8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065464414</pqid></control><display><type>article</type><title>Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Ali, Muhammad Umair ; Zafar, Amad ; Kallu, Karam Dad ; Masood, Haris ; Mannan, Malik Muhammad Naeem ; Ibrahim, Malik Muhammad ; Kim, Sangil ; Khan, Muhammad Attique</creator><creatorcontrib>Ali, Muhammad Umair ; Zafar, Amad ; Kallu, Karam Dad ; Masood, Haris ; Mannan, Malik Muhammad Naeem ; Ibrahim, Malik Muhammad ; Kim, Sangil ; Khan, Muhammad Attique</creatorcontrib><description>The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance ( p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2023.3294586</identifier><identifier>PMID: 37436864</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Band-pass filters ; Biochips ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain modeling ; Brain-Computer Interfaces ; Brain–computer interface (BCI) ; channel selection ; Chi-square test ; Classifiers ; Computer applications ; Correlation ; Discriminant analysis ; EEG ; EEG-fNIRS ; Electroencephalography ; Electroencephalography - methods ; Feature extraction ; Feature selection ; Filters ; Functional near-infrared spectroscopy ; Human-computer interface ; Humans ; Implants ; Infrared spectra ; Infrared spectroscopy ; Kurtosis ; Medical imaging ; Mental task performance ; motor imagery ; Near infrared radiation ; Neural networks ; Neuroimaging ; Redundancy ; Signal Processing, Computer-Assisted ; Skewness ; Spectroscopy ; Spectroscopy, Near-Infrared - methods ; Statistical analysis ; Statistics ; Support Vector Machine ; Support vector machines ; Task analysis ; Training ; Variance analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-06, Vol.28 (6), p.3361-3370</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-c692cab3403c9c09c9d382806e6c4626497f8fa167f1898d669c7033a061b2e43</citedby><cites>FETCH-LOGICAL-c350t-c692cab3403c9c09c9d382806e6c4626497f8fa167f1898d669c7033a061b2e43</cites><orcidid>0000-0001-5723-3858 ; 0000-0002-7326-1813 ; 0000-0002-0716-3932 ; 0000-0002-4408-2904 ; 0000-0003-2561-2567 ; 0000-0003-2608-505X ; 0000-0001-9095-0955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10179221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10179221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37436864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ali, Muhammad Umair</creatorcontrib><creatorcontrib>Zafar, Amad</creatorcontrib><creatorcontrib>Kallu, Karam Dad</creatorcontrib><creatorcontrib>Masood, Haris</creatorcontrib><creatorcontrib>Mannan, Malik Muhammad Naeem</creatorcontrib><creatorcontrib>Ibrahim, Malik Muhammad</creatorcontrib><creatorcontrib>Kim, Sangil</creatorcontrib><creatorcontrib>Khan, Muhammad Attique</creatorcontrib><title>Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance ( p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Band-pass filters</subject><subject>Biochips</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain modeling</subject><subject>Brain-Computer Interfaces</subject><subject>Brain–computer interface (BCI)</subject><subject>channel selection</subject><subject>Chi-square test</subject><subject>Classifiers</subject><subject>Computer applications</subject><subject>Correlation</subject><subject>Discriminant analysis</subject><subject>EEG</subject><subject>EEG-fNIRS</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Filters</subject><subject>Functional near-infrared spectroscopy</subject><subject>Human-computer interface</subject><subject>Humans</subject><subject>Implants</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Kurtosis</subject><subject>Medical imaging</subject><subject>Mental task performance</subject><subject>motor imagery</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Redundancy</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Skewness</subject><subject>Spectroscopy</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Task analysis</subject><subject>Training</subject><subject>Variance analysis</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkV1LwzAUhoMoOtQfIIgEvPGmM19Lk8utbG4yFJxehyw9xc6unUmL7N_buk3E3JwQnvNwcl6ErijpU0r0_eNoOuszwnifMy0GSh6hHqNSRYwRdXy4Uy3O0GUIK9Ie1T5peYrOeCy4VFL0UJZU3kNh67wqo0le1OCjkQ2Q4uTdliUU2JYpnoCtGw94AQW4DsUTb9fwVfkPnFUeT7dLn6d4PH6IsqfZywKPkhkebjZF7n7M4QKdZLYIcLmv5-htMn5NptH8-WGWDOeR4wNSR05q5uySC8KddkQ7nXLFFJEgnZBMCh1nKrNUxhlVWqVSahcTzi2RdMlA8HN0t_NufPXZQKjNOg8OisKWUDXBMNX-O26FukVv_6GrqvFlO53hRA6EFIJ2QrqjnK9C8JCZjc_X1m8NJabLwXQ5mC4Hs8-h7bnZm5vlGtLfjsPWW-B6B-QA8EdIY80Y5d9HRok8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ali, Muhammad Umair</creator><creator>Zafar, Amad</creator><creator>Kallu, Karam Dad</creator><creator>Masood, Haris</creator><creator>Mannan, Malik Muhammad Naeem</creator><creator>Ibrahim, Malik Muhammad</creator><creator>Kim, Sangil</creator><creator>Khan, Muhammad Attique</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5723-3858</orcidid><orcidid>https://orcid.org/0000-0002-7326-1813</orcidid><orcidid>https://orcid.org/0000-0002-0716-3932</orcidid><orcidid>https://orcid.org/0000-0002-4408-2904</orcidid><orcidid>https://orcid.org/0000-0003-2561-2567</orcidid><orcidid>https://orcid.org/0000-0003-2608-505X</orcidid><orcidid>https://orcid.org/0000-0001-9095-0955</orcidid></search><sort><creationdate>20240601</creationdate><title>Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications</title><author>Ali, Muhammad Umair ; Zafar, Amad ; Kallu, Karam Dad ; Masood, Haris ; Mannan, Malik Muhammad Naeem ; Ibrahim, Malik Muhammad ; Kim, Sangil ; Khan, Muhammad Attique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c692cab3403c9c09c9d382806e6c4626497f8fa167f1898d669c7033a061b2e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Band-pass filters</topic><topic>Biochips</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain modeling</topic><topic>Brain-Computer Interfaces</topic><topic>Brain–computer interface (BCI)</topic><topic>channel selection</topic><topic>Chi-square test</topic><topic>Classifiers</topic><topic>Computer applications</topic><topic>Correlation</topic><topic>Discriminant analysis</topic><topic>EEG</topic><topic>EEG-fNIRS</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Filters</topic><topic>Functional near-infrared spectroscopy</topic><topic>Human-computer interface</topic><topic>Humans</topic><topic>Implants</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Kurtosis</topic><topic>Medical imaging</topic><topic>Mental task performance</topic><topic>motor imagery</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Redundancy</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Skewness</topic><topic>Spectroscopy</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Task analysis</topic><topic>Training</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Muhammad Umair</creatorcontrib><creatorcontrib>Zafar, Amad</creatorcontrib><creatorcontrib>Kallu, Karam Dad</creatorcontrib><creatorcontrib>Masood, Haris</creatorcontrib><creatorcontrib>Mannan, Malik Muhammad Naeem</creatorcontrib><creatorcontrib>Ibrahim, Malik Muhammad</creatorcontrib><creatorcontrib>Kim, Sangil</creatorcontrib><creatorcontrib>Khan, Muhammad Attique</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ali, Muhammad Umair</au><au>Zafar, Amad</au><au>Kallu, Karam Dad</au><au>Masood, Haris</au><au>Mannan, Malik Muhammad Naeem</au><au>Ibrahim, Malik Muhammad</au><au>Kim, Sangil</au><au>Khan, Muhammad Attique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>28</volume><issue>6</issue><spage>3361</spage><epage>3370</epage><pages>3361-3370</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance ( p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37436864</pmid><doi>10.1109/JBHI.2023.3294586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5723-3858</orcidid><orcidid>https://orcid.org/0000-0002-7326-1813</orcidid><orcidid>https://orcid.org/0000-0002-0716-3932</orcidid><orcidid>https://orcid.org/0000-0002-4408-2904</orcidid><orcidid>https://orcid.org/0000-0003-2561-2567</orcidid><orcidid>https://orcid.org/0000-0003-2608-505X</orcidid><orcidid>https://orcid.org/0000-0001-9095-0955</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-06, Vol.28 (6), p.3361-3370 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_37436864 |
source | IEEE Electronic Library (IEL) |
subjects | Adult Algorithms Band-pass filters Biochips Brain Brain - diagnostic imaging Brain - physiology Brain modeling Brain-Computer Interfaces Brain–computer interface (BCI) channel selection Chi-square test Classifiers Computer applications Correlation Discriminant analysis EEG EEG-fNIRS Electroencephalography Electroencephalography - methods Feature extraction Feature selection Filters Functional near-infrared spectroscopy Human-computer interface Humans Implants Infrared spectra Infrared spectroscopy Kurtosis Medical imaging Mental task performance motor imagery Near infrared radiation Neural networks Neuroimaging Redundancy Signal Processing, Computer-Assisted Skewness Spectroscopy Spectroscopy, Near-Infrared - methods Statistical analysis Statistics Support Vector Machine Support vector machines Task analysis Training Variance analysis |
title | Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation-Filter-Based%20Channel%20and%20Feature%20Selection%20Framework%20for%20Hybrid%20EEG-fNIRS%20BCI%20Applications&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Ali,%20Muhammad%20Umair&rft.date=2024-06-01&rft.volume=28&rft.issue=6&rft.spage=3361&rft.epage=3370&rft.pages=3361-3370&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2023.3294586&rft_dat=%3Cproquest_RIE%3E2836878069%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065464414&rft_id=info:pmid/37436864&rft_ieee_id=10179221&rfr_iscdi=true |