Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production

Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-07, Vol.25 (29), p.1938-1948
Hauptverfasser: Khairani, Inna Y, Mínguez-Vega, Gladys, Doñate-Buendía, Carlos, Gökce, Bilal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1948
container_issue 29
container_start_page 1938
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Khairani, Inna Y
Mínguez-Vega, Gladys
Doñate-Buendía, Carlos
Gökce, Bilal
description Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids. This article explores upscaling productivity of laser-generated nanoparticles in liquid and its automatization for industrial applications, considering laser and chamber design, scanner technology, liquid and target properties.
doi_str_mv 10.1039/d3cp01214j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37435616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841903270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-363f6d9173522b33240a6cb3a667f57eb7b22843d99f5c352a28722e567a20063</originalsourceid><addsrcrecordid>eNpd0c1u1DAUBWALUdEysGEPssQGIQVs38ROukMDlFaVYAHryHFuJh4lceqfSn0LHrkuUwaJlS3507lXPoS84uwDZ9B87MGsjAte7p-QM15KKBpWl0-PdyVPyfMQ9owxXnF4Rk5BlVBJLs_I7wuPuNBFL27VPlozIQ13Sxwx2EB1pMHoCc-ppiv6sKKJ9hapW6i7RW_cbJcdzZhOdrYxUDfQNU0BezrpgJ7qbtLRZm6XTG6S7QMdnKej3Y1FHL1Lu3FNka7e9ck8yBfkZNA54eXjuSG_vn75uf1WXH-_uNx-ui4MKIgFSBhk33AFlRAdgCiZlqYDLaUaKoWd6oSoS-ibZqhMRlrUSgispNKCMQkb8u6Qm0ffJAyxnW0wOE16QZdCK2qQolF1_rANefsf3bvkl7xdViVvGAjFsnp_UMa7EDwO7ertrP1dy1n70FP7GbY__vR0lfGbx8jUzdgf6d9iMnh9AD6Y4-u_ouEe872Yhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841903270</pqid></control><display><type>article</type><title>Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Khairani, Inna Y ; Mínguez-Vega, Gladys ; Doñate-Buendía, Carlos ; Gökce, Bilal</creator><creatorcontrib>Khairani, Inna Y ; Mínguez-Vega, Gladys ; Doñate-Buendía, Carlos ; Gökce, Bilal</creatorcontrib><description>Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids. This article explores upscaling productivity of laser-generated nanoparticles in liquid and its automatization for industrial applications, considering laser and chamber design, scanner technology, liquid and target properties.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp01214j</identifier><identifier>PMID: 37435616</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ablation ; Energy harvesting ; Energy storage ; Laser ablation ; Lasers ; Liquids ; Nanoparticles ; Parameters ; Productivity ; Pulsed lasers ; Scaling up ; Surface properties</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-07, Vol.25 (29), p.1938-1948</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-363f6d9173522b33240a6cb3a667f57eb7b22843d99f5c352a28722e567a20063</citedby><cites>FETCH-LOGICAL-c373t-363f6d9173522b33240a6cb3a667f57eb7b22843d99f5c352a28722e567a20063</cites><orcidid>0000-0003-4994-1859 ; 0000-0002-7022-0960 ; 0000-0001-6368-9659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37435616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khairani, Inna Y</creatorcontrib><creatorcontrib>Mínguez-Vega, Gladys</creatorcontrib><creatorcontrib>Doñate-Buendía, Carlos</creatorcontrib><creatorcontrib>Gökce, Bilal</creatorcontrib><title>Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids. This article explores upscaling productivity of laser-generated nanoparticles in liquid and its automatization for industrial applications, considering laser and chamber design, scanner technology, liquid and target properties.</description><subject>Ablation</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Liquids</subject><subject>Nanoparticles</subject><subject>Parameters</subject><subject>Productivity</subject><subject>Pulsed lasers</subject><subject>Scaling up</subject><subject>Surface properties</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c1u1DAUBWALUdEysGEPssQGIQVs38ROukMDlFaVYAHryHFuJh4lceqfSn0LHrkuUwaJlS3507lXPoS84uwDZ9B87MGsjAte7p-QM15KKBpWl0-PdyVPyfMQ9owxXnF4Rk5BlVBJLs_I7wuPuNBFL27VPlozIQ13Sxwx2EB1pMHoCc-ppiv6sKKJ9hapW6i7RW_cbJcdzZhOdrYxUDfQNU0BezrpgJ7qbtLRZm6XTG6S7QMdnKej3Y1FHL1Lu3FNka7e9ck8yBfkZNA54eXjuSG_vn75uf1WXH-_uNx-ui4MKIgFSBhk33AFlRAdgCiZlqYDLaUaKoWd6oSoS-ibZqhMRlrUSgispNKCMQkb8u6Qm0ffJAyxnW0wOE16QZdCK2qQolF1_rANefsf3bvkl7xdViVvGAjFsnp_UMa7EDwO7ertrP1dy1n70FP7GbY__vR0lfGbx8jUzdgf6d9iMnh9AD6Y4-u_ouEe872Yhg</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Khairani, Inna Y</creator><creator>Mínguez-Vega, Gladys</creator><creator>Doñate-Buendía, Carlos</creator><creator>Gökce, Bilal</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4994-1859</orcidid><orcidid>https://orcid.org/0000-0002-7022-0960</orcidid><orcidid>https://orcid.org/0000-0001-6368-9659</orcidid></search><sort><creationdate>20230726</creationdate><title>Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production</title><author>Khairani, Inna Y ; Mínguez-Vega, Gladys ; Doñate-Buendía, Carlos ; Gökce, Bilal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-363f6d9173522b33240a6cb3a667f57eb7b22843d99f5c352a28722e567a20063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Liquids</topic><topic>Nanoparticles</topic><topic>Parameters</topic><topic>Productivity</topic><topic>Pulsed lasers</topic><topic>Scaling up</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khairani, Inna Y</creatorcontrib><creatorcontrib>Mínguez-Vega, Gladys</creatorcontrib><creatorcontrib>Doñate-Buendía, Carlos</creatorcontrib><creatorcontrib>Gökce, Bilal</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khairani, Inna Y</au><au>Mínguez-Vega, Gladys</au><au>Doñate-Buendía, Carlos</au><au>Gökce, Bilal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-07-26</date><risdate>2023</risdate><volume>25</volume><issue>29</issue><spage>1938</spage><epage>1948</epage><pages>1938-1948</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Nanoparticles have become increasingly important for a variety of applications, including medical diagnosis and treatment, energy harvesting and storage, catalysis, and additive manufacturing. The development of nanoparticles with different compositions, sizes, and surface properties is essential to optimize their performance for specific applications. Pulsed laser ablation in liquid is a green chemistry approach that allows for the production of ligand-free nanoparticles with diverse shapes and phases. Despite these numerous advantages, the current production rate of this method remains limited, with typical rates in the milligram per hour range. To unlock the full potential of this technique for various applications, researchers have dedicated efforts to scaling up production rates to the gram-per-hour range. Achieving this goal necessitates a thorough understanding of the factors that limit pulsed laser ablation in liquid (PLAL) productivity, including laser, target, liquid, chamber, and scanner parameters. This perspective article explores these factors and provides a roadmap for increasing PLAL productivity that can be adapted to specific applications. By carefully controlling these parameters and developing new strategies for scaling up production, researchers can unlock the full potential of pulsed laser ablation in liquids. This article explores upscaling productivity of laser-generated nanoparticles in liquid and its automatization for industrial applications, considering laser and chamber design, scanner technology, liquid and target properties.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37435616</pmid><doi>10.1039/d3cp01214j</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-4994-1859</orcidid><orcidid>https://orcid.org/0000-0002-7022-0960</orcidid><orcidid>https://orcid.org/0000-0001-6368-9659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-07, Vol.25 (29), p.1938-1948
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_37435616
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Ablation
Energy harvesting
Energy storage
Laser ablation
Lasers
Liquids
Nanoparticles
Parameters
Productivity
Pulsed lasers
Scaling up
Surface properties
title Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20nanoparticle%20synthesis%20at%20scale:%20a%20perspective%20on%20overcoming%20the%20limits%20of%20pulsed%20laser%20ablation%20in%20liquids%20for%20high-throughput%20production&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Khairani,%20Inna%20Y&rft.date=2023-07-26&rft.volume=25&rft.issue=29&rft.spage=1938&rft.epage=1948&rft.pages=1938-1948&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp01214j&rft_dat=%3Cproquest_pubme%3E2841903270%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841903270&rft_id=info:pmid/37435616&rfr_iscdi=true