Quasi-classical simulations of resonance Raman spectra based on path integral linearization

Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-07, Vol.159 (2)
Hauptverfasser: Bessone, Hugo, Vuilleumier, Rodolphe, Spezia, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Bessone, Hugo
Vuilleumier, Rodolphe
Spezia, Riccardo
description Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).
doi_str_mv 10.1063/5.0143862
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37428056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835289119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6d08017757c156d3fcad2bd96060a2082296adc6fa0f9fc17edd86c556f9f0a3</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYMo9lp98AtIwBcrbJ1kN_8eS7G2cKFU-uZDmJtkbcpuck12Bf307u29VuiDT2HCb86cmUPIWwanDGT7SZwC61ot-TOyYqBNo6SB52QFwFljJMgj8qrWewBgincvyVGrOq5ByBX5djNjjY0bsNbocKA1jvOAU8yp0tzTEmpOmFygX3HEROs2uKkg3WANnuZEtzjd0Zim8L0s3UNMAUv8_SDwmrzocajhzeE9JrcXn2_PL5v19Zer87N141qlpkZ60IsxJZRjQvq2d-j5xu98A3LQnBuJ3skeoTe9Yyp4r6UTQi4lYHtMTvaydzjYbYkjll82Y7SXZ2u7-4OOCW1M95Mt7Ic9uy35xxzqZMdYXRgGTCHP1XLdGi64as2Cvn-C3ue5pGWRHSW4NoyZf8NdybWW0D86YGB34VhhD-Es7LuD4rwZg38k_6axAB_3QHVxejjhf9T-AP2blbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835289119</pqid></control><display><type>article</type><title>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bessone, Hugo ; Vuilleumier, Rodolphe ; Spezia, Riccardo</creator><creatorcontrib>Bessone, Hugo ; Vuilleumier, Rodolphe ; Spezia, Riccardo</creatorcontrib><description>Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0143862</identifier><identifier>PMID: 37428056</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Absorption spectra ; Anharmonicity ; Chemical Sciences ; Excitation ; Fine structure ; Linearization ; or physical chemistry ; Physics ; Quantum mechanics ; Raman spectra ; Resonance ; Resonance scattering ; Theoretical and ; Trajectories</subject><ispartof>The Journal of chemical physics, 2023-07, Vol.159 (2)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-6d08017757c156d3fcad2bd96060a2082296adc6fa0f9fc17edd86c556f9f0a3</cites><orcidid>0000-0001-5160-489X ; 0000-0003-2751-7264 ; 0000-0001-5386-699X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0143862$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37428056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-04158994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bessone, Hugo</creatorcontrib><creatorcontrib>Vuilleumier, Rodolphe</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><title>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).</description><subject>Absorption spectra</subject><subject>Anharmonicity</subject><subject>Chemical Sciences</subject><subject>Excitation</subject><subject>Fine structure</subject><subject>Linearization</subject><subject>or physical chemistry</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Raman spectra</subject><subject>Resonance</subject><subject>Resonance scattering</subject><subject>Theoretical and</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV9rFTEQxYMo9lp98AtIwBcrbJ1kN_8eS7G2cKFU-uZDmJtkbcpuck12Bf307u29VuiDT2HCb86cmUPIWwanDGT7SZwC61ot-TOyYqBNo6SB52QFwFljJMgj8qrWewBgincvyVGrOq5ByBX5djNjjY0bsNbocKA1jvOAU8yp0tzTEmpOmFygX3HEROs2uKkg3WANnuZEtzjd0Zim8L0s3UNMAUv8_SDwmrzocajhzeE9JrcXn2_PL5v19Zer87N141qlpkZ60IsxJZRjQvq2d-j5xu98A3LQnBuJ3skeoTe9Yyp4r6UTQi4lYHtMTvaydzjYbYkjll82Y7SXZ2u7-4OOCW1M95Mt7Ic9uy35xxzqZMdYXRgGTCHP1XLdGi64as2Cvn-C3ue5pGWRHSW4NoyZf8NdybWW0D86YGB34VhhD-Es7LuD4rwZg38k_6axAB_3QHVxejjhf9T-AP2blbg</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Bessone, Hugo</creator><creator>Vuilleumier, Rodolphe</creator><creator>Spezia, Riccardo</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5160-489X</orcidid><orcidid>https://orcid.org/0000-0003-2751-7264</orcidid><orcidid>https://orcid.org/0000-0001-5386-699X</orcidid></search><sort><creationdate>20230714</creationdate><title>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</title><author>Bessone, Hugo ; Vuilleumier, Rodolphe ; Spezia, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6d08017757c156d3fcad2bd96060a2082296adc6fa0f9fc17edd86c556f9f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectra</topic><topic>Anharmonicity</topic><topic>Chemical Sciences</topic><topic>Excitation</topic><topic>Fine structure</topic><topic>Linearization</topic><topic>or physical chemistry</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Raman spectra</topic><topic>Resonance</topic><topic>Resonance scattering</topic><topic>Theoretical and</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessone, Hugo</creatorcontrib><creatorcontrib>Vuilleumier, Rodolphe</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessone, Hugo</au><au>Vuilleumier, Rodolphe</au><au>Spezia, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-07-14</date><risdate>2023</risdate><volume>159</volume><issue>2</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37428056</pmid><doi>10.1063/5.0143862</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5160-489X</orcidid><orcidid>https://orcid.org/0000-0003-2751-7264</orcidid><orcidid>https://orcid.org/0000-0001-5386-699X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-07, Vol.159 (2)
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_37428056
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorption spectra
Anharmonicity
Chemical Sciences
Excitation
Fine structure
Linearization
or physical chemistry
Physics
Quantum mechanics
Raman spectra
Resonance
Resonance scattering
Theoretical and
Trajectories
title Quasi-classical simulations of resonance Raman spectra based on path integral linearization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-classical%20simulations%20of%20resonance%20Raman%20spectra%20based%20on%20path%20integral%20linearization&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bessone,%20Hugo&rft.date=2023-07-14&rft.volume=159&rft.issue=2&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0143862&rft_dat=%3Cproquest_pubme%3E2835289119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835289119&rft_id=info:pmid/37428056&rfr_iscdi=true