Quasi-classical simulations of resonance Raman spectra based on path integral linearization
Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-07, Vol.159 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 159 |
creator | Bessone, Hugo Vuilleumier, Rodolphe Spezia, Riccardo |
description | Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl). |
doi_str_mv | 10.1063/5.0143862 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37428056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835289119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6d08017757c156d3fcad2bd96060a2082296adc6fa0f9fc17edd86c556f9f0a3</originalsourceid><addsrcrecordid>eNp9kV9rFTEQxYMo9lp98AtIwBcrbJ1kN_8eS7G2cKFU-uZDmJtkbcpuck12Bf307u29VuiDT2HCb86cmUPIWwanDGT7SZwC61ot-TOyYqBNo6SB52QFwFljJMgj8qrWewBgincvyVGrOq5ByBX5djNjjY0bsNbocKA1jvOAU8yp0tzTEmpOmFygX3HEROs2uKkg3WANnuZEtzjd0Zim8L0s3UNMAUv8_SDwmrzocajhzeE9JrcXn2_PL5v19Zer87N141qlpkZ60IsxJZRjQvq2d-j5xu98A3LQnBuJ3skeoTe9Yyp4r6UTQi4lYHtMTvaydzjYbYkjll82Y7SXZ2u7-4OOCW1M95Mt7Ic9uy35xxzqZMdYXRgGTCHP1XLdGi64as2Cvn-C3ue5pGWRHSW4NoyZf8NdybWW0D86YGB34VhhD-Es7LuD4rwZg38k_6axAB_3QHVxejjhf9T-AP2blbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835289119</pqid></control><display><type>article</type><title>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bessone, Hugo ; Vuilleumier, Rodolphe ; Spezia, Riccardo</creator><creatorcontrib>Bessone, Hugo ; Vuilleumier, Rodolphe ; Spezia, Riccardo</creatorcontrib><description>Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0143862</identifier><identifier>PMID: 37428056</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Absorption spectra ; Anharmonicity ; Chemical Sciences ; Excitation ; Fine structure ; Linearization ; or physical chemistry ; Physics ; Quantum mechanics ; Raman spectra ; Resonance ; Resonance scattering ; Theoretical and ; Trajectories</subject><ispartof>The Journal of chemical physics, 2023-07, Vol.159 (2)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-6d08017757c156d3fcad2bd96060a2082296adc6fa0f9fc17edd86c556f9f0a3</cites><orcidid>0000-0001-5160-489X ; 0000-0003-2751-7264 ; 0000-0001-5386-699X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0143862$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37428056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-04158994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bessone, Hugo</creatorcontrib><creatorcontrib>Vuilleumier, Rodolphe</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><title>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).</description><subject>Absorption spectra</subject><subject>Anharmonicity</subject><subject>Chemical Sciences</subject><subject>Excitation</subject><subject>Fine structure</subject><subject>Linearization</subject><subject>or physical chemistry</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Raman spectra</subject><subject>Resonance</subject><subject>Resonance scattering</subject><subject>Theoretical and</subject><subject>Trajectories</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV9rFTEQxYMo9lp98AtIwBcrbJ1kN_8eS7G2cKFU-uZDmJtkbcpuck12Bf307u29VuiDT2HCb86cmUPIWwanDGT7SZwC61ot-TOyYqBNo6SB52QFwFljJMgj8qrWewBgincvyVGrOq5ByBX5djNjjY0bsNbocKA1jvOAU8yp0tzTEmpOmFygX3HEROs2uKkg3WANnuZEtzjd0Zim8L0s3UNMAUv8_SDwmrzocajhzeE9JrcXn2_PL5v19Zer87N141qlpkZ60IsxJZRjQvq2d-j5xu98A3LQnBuJ3skeoTe9Yyp4r6UTQi4lYHtMTvaydzjYbYkjll82Y7SXZ2u7-4OOCW1M95Mt7Ic9uy35xxzqZMdYXRgGTCHP1XLdGi64as2Cvn-C3ue5pGWRHSW4NoyZf8NdybWW0D86YGB34VhhD-Es7LuD4rwZg38k_6axAB_3QHVxejjhf9T-AP2blbg</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Bessone, Hugo</creator><creator>Vuilleumier, Rodolphe</creator><creator>Spezia, Riccardo</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5160-489X</orcidid><orcidid>https://orcid.org/0000-0003-2751-7264</orcidid><orcidid>https://orcid.org/0000-0001-5386-699X</orcidid></search><sort><creationdate>20230714</creationdate><title>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</title><author>Bessone, Hugo ; Vuilleumier, Rodolphe ; Spezia, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6d08017757c156d3fcad2bd96060a2082296adc6fa0f9fc17edd86c556f9f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectra</topic><topic>Anharmonicity</topic><topic>Chemical Sciences</topic><topic>Excitation</topic><topic>Fine structure</topic><topic>Linearization</topic><topic>or physical chemistry</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Raman spectra</topic><topic>Resonance</topic><topic>Resonance scattering</topic><topic>Theoretical and</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessone, Hugo</creatorcontrib><creatorcontrib>Vuilleumier, Rodolphe</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessone, Hugo</au><au>Vuilleumier, Rodolphe</au><au>Spezia, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-classical simulations of resonance Raman spectra based on path integral linearization</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-07-14</date><risdate>2023</risdate><volume>159</volume><issue>2</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Based on a linearization approximation coupled with path integral formalism, we propose a method derived from the propagation of quasi-classical trajectories to simulate resonance Raman spectra. This method is based on ground state sampling followed by an ensemble of trajectories on the mean surface between the ground and excited states. The method was tested on three models and compared to a quantum mechanics solution based on a sum-over-states approach: harmonic and anharmonic oscillators and the HOCl molecule (hypochlorous acid). The method proposed is able to correctly characterize resonance Raman scattering and enhancement, including the description of overtones and combination bands. The absorption spectrum is obtained at the same time, and the vibrational fine structure can be reproduced for long excited state relaxation times. The method can also be applied to dissociating excited states (as is the case for HOCl).</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37428056</pmid><doi>10.1063/5.0143862</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5160-489X</orcidid><orcidid>https://orcid.org/0000-0003-2751-7264</orcidid><orcidid>https://orcid.org/0000-0001-5386-699X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-07, Vol.159 (2) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_37428056 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption spectra Anharmonicity Chemical Sciences Excitation Fine structure Linearization or physical chemistry Physics Quantum mechanics Raman spectra Resonance Resonance scattering Theoretical and Trajectories |
title | Quasi-classical simulations of resonance Raman spectra based on path integral linearization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-classical%20simulations%20of%20resonance%20Raman%20spectra%20based%20on%20path%20integral%20linearization&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bessone,%20Hugo&rft.date=2023-07-14&rft.volume=159&rft.issue=2&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0143862&rft_dat=%3Cproquest_pubme%3E2835289119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835289119&rft_id=info:pmid/37428056&rfr_iscdi=true |