Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials
The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically de...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-07, Vol.159 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 159 |
creator | Krondorfer, Johannes K. Binder, Christian W. Hauser, Andreas W. |
description | The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2. |
doi_str_mv | 10.1063/5.0154989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37417752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834319280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEURYMoTju68A9IwI0KNearkspyGHQUBlyo6-JV8tKToSvVJimh9_5w03TrwoWruzkc7nuXkJecXXGm5fv-ivFe2cE-IhvOBtsZbdljsmFM8M5qpi_Is1IeGGPcCPWUXEijuDG92JBfXw_zjDUfOgrJ020GHzHVDtM9JIee3sJaSoRE93lxWArNuM0t45JoWDKt90jB1fgT6Q4hp5i2dAl0v9SmibCjmDBvD7SsOUAT0NhUS17WQmeomBtSnpMnoQW-OOcl-f7xw7ebT93dl9vPN9d3nZODrJ0GPfkhhEFboaQHVIAeQE3C88koJWDQUzDGGiemyVqFXgSrjPDOaZRBXpI3J2-75ceKpY5zLA53O0jYCo1ikL0wTBnW0Nf_oA_LmlNrd6SU5FYMR-rtiXJ5KSVjGPc5zpAPI2fjcZqxH8_TNPbV2bhOM_q_5J8tGvDuBBQXK9T24P_YfgMqvpj1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834319280</pqid></control><display><type>article</type><title>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</title><source>Alma/SFX Local Collection</source><source>AIP Journals (American Institute of Physics)</source><creator>Krondorfer, Johannes K. ; Binder, Christian W. ; Hauser, Andreas W.</creator><creatorcontrib>Krondorfer, Johannes K. ; Binder, Christian W. ; Hauser, Andreas W.</creatorcontrib><description>The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0154989</identifier><identifier>PMID: 37417752</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; Algorithms ; Biological Transport ; Diffusion ; Gas transport ; Gaussian process ; Graphene ; Learning ; Physics ; Porosity ; Porous materials ; Potential energy ; Symmetry ; Transport phenomena</subject><ispartof>The Journal of chemical physics, 2023-07, Vol.159 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</citedby><cites>FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</cites><orcidid>0000-0003-2727-3861 ; 0009-0009-5006-6319 ; 0000-0001-6918-3106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0154989$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37417752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krondorfer, Johannes K.</creatorcontrib><creatorcontrib>Binder, Christian W.</creatorcontrib><creatorcontrib>Hauser, Andreas W.</creatorcontrib><title>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Biological Transport</subject><subject>Diffusion</subject><subject>Gas transport</subject><subject>Gaussian process</subject><subject>Graphene</subject><subject>Learning</subject><subject>Physics</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Potential energy</subject><subject>Symmetry</subject><subject>Transport phenomena</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEURYMoTju68A9IwI0KNearkspyGHQUBlyo6-JV8tKToSvVJimh9_5w03TrwoWruzkc7nuXkJecXXGm5fv-ivFe2cE-IhvOBtsZbdljsmFM8M5qpi_Is1IeGGPcCPWUXEijuDG92JBfXw_zjDUfOgrJ020GHzHVDtM9JIee3sJaSoRE93lxWArNuM0t45JoWDKt90jB1fgT6Q4hp5i2dAl0v9SmibCjmDBvD7SsOUAT0NhUS17WQmeomBtSnpMnoQW-OOcl-f7xw7ebT93dl9vPN9d3nZODrJ0GPfkhhEFboaQHVIAeQE3C88koJWDQUzDGGiemyVqFXgSrjPDOaZRBXpI3J2-75ceKpY5zLA53O0jYCo1ikL0wTBnW0Nf_oA_LmlNrd6SU5FYMR-rtiXJ5KSVjGPc5zpAPI2fjcZqxH8_TNPbV2bhOM_q_5J8tGvDuBBQXK9T24P_YfgMqvpj1</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Krondorfer, Johannes K.</creator><creator>Binder, Christian W.</creator><creator>Hauser, Andreas W.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2727-3861</orcidid><orcidid>https://orcid.org/0009-0009-5006-6319</orcidid><orcidid>https://orcid.org/0000-0001-6918-3106</orcidid></search><sort><creationdate>20230707</creationdate><title>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</title><author>Krondorfer, Johannes K. ; Binder, Christian W. ; Hauser, Andreas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Biological Transport</topic><topic>Diffusion</topic><topic>Gas transport</topic><topic>Gaussian process</topic><topic>Graphene</topic><topic>Learning</topic><topic>Physics</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Potential energy</topic><topic>Symmetry</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krondorfer, Johannes K.</creatorcontrib><creatorcontrib>Binder, Christian W.</creatorcontrib><creatorcontrib>Hauser, Andreas W.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krondorfer, Johannes K.</au><au>Binder, Christian W.</au><au>Hauser, Andreas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-07-07</date><risdate>2023</risdate><volume>159</volume><issue>1</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37417752</pmid><doi>10.1063/5.0154989</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2727-3861</orcidid><orcidid>https://orcid.org/0009-0009-5006-6319</orcidid><orcidid>https://orcid.org/0000-0001-6918-3106</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-07, Vol.159 (1) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_37417752 |
source | Alma/SFX Local Collection; AIP Journals (American Institute of Physics) |
subjects | Adsorption Algorithms Biological Transport Diffusion Gas transport Gaussian process Graphene Learning Physics Porosity Porous materials Potential energy Symmetry Transport phenomena |
title | Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry-%20and%20gradient-enhanced%20Gaussian%20process%20regression%20for%20the%20active%20learning%20of%20potential%20energy%20surfaces%20in%20porous%20materials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Krondorfer,%20Johannes%20K.&rft.date=2023-07-07&rft.volume=159&rft.issue=1&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0154989&rft_dat=%3Cproquest_pubme%3E2834319280%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834319280&rft_id=info:pmid/37417752&rfr_iscdi=true |