Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials

The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-07, Vol.159 (1)
Hauptverfasser: Krondorfer, Johannes K., Binder, Christian W., Hauser, Andreas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Krondorfer, Johannes K.
Binder, Christian W.
Hauser, Andreas W.
description The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.
doi_str_mv 10.1063/5.0154989
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_37417752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834319280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEURYMoTju68A9IwI0KNearkspyGHQUBlyo6-JV8tKToSvVJimh9_5w03TrwoWruzkc7nuXkJecXXGm5fv-ivFe2cE-IhvOBtsZbdljsmFM8M5qpi_Is1IeGGPcCPWUXEijuDG92JBfXw_zjDUfOgrJ020GHzHVDtM9JIee3sJaSoRE93lxWArNuM0t45JoWDKt90jB1fgT6Q4hp5i2dAl0v9SmibCjmDBvD7SsOUAT0NhUS17WQmeomBtSnpMnoQW-OOcl-f7xw7ebT93dl9vPN9d3nZODrJ0GPfkhhEFboaQHVIAeQE3C88koJWDQUzDGGiemyVqFXgSrjPDOaZRBXpI3J2-75ceKpY5zLA53O0jYCo1ikL0wTBnW0Nf_oA_LmlNrd6SU5FYMR-rtiXJ5KSVjGPc5zpAPI2fjcZqxH8_TNPbV2bhOM_q_5J8tGvDuBBQXK9T24P_YfgMqvpj1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834319280</pqid></control><display><type>article</type><title>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</title><source>Alma/SFX Local Collection</source><source>AIP Journals (American Institute of Physics)</source><creator>Krondorfer, Johannes K. ; Binder, Christian W. ; Hauser, Andreas W.</creator><creatorcontrib>Krondorfer, Johannes K. ; Binder, Christian W. ; Hauser, Andreas W.</creatorcontrib><description>The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0154989</identifier><identifier>PMID: 37417752</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; Algorithms ; Biological Transport ; Diffusion ; Gas transport ; Gaussian process ; Graphene ; Learning ; Physics ; Porosity ; Porous materials ; Potential energy ; Symmetry ; Transport phenomena</subject><ispartof>The Journal of chemical physics, 2023-07, Vol.159 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</citedby><cites>FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</cites><orcidid>0000-0003-2727-3861 ; 0009-0009-5006-6319 ; 0000-0001-6918-3106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0154989$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37417752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krondorfer, Johannes K.</creatorcontrib><creatorcontrib>Binder, Christian W.</creatorcontrib><creatorcontrib>Hauser, Andreas W.</creatorcontrib><title>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Biological Transport</subject><subject>Diffusion</subject><subject>Gas transport</subject><subject>Gaussian process</subject><subject>Graphene</subject><subject>Learning</subject><subject>Physics</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Potential energy</subject><subject>Symmetry</subject><subject>Transport phenomena</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEURYMoTju68A9IwI0KNearkspyGHQUBlyo6-JV8tKToSvVJimh9_5w03TrwoWruzkc7nuXkJecXXGm5fv-ivFe2cE-IhvOBtsZbdljsmFM8M5qpi_Is1IeGGPcCPWUXEijuDG92JBfXw_zjDUfOgrJ020GHzHVDtM9JIee3sJaSoRE93lxWArNuM0t45JoWDKt90jB1fgT6Q4hp5i2dAl0v9SmibCjmDBvD7SsOUAT0NhUS17WQmeomBtSnpMnoQW-OOcl-f7xw7ebT93dl9vPN9d3nZODrJ0GPfkhhEFboaQHVIAeQE3C88koJWDQUzDGGiemyVqFXgSrjPDOaZRBXpI3J2-75ceKpY5zLA53O0jYCo1ikL0wTBnW0Nf_oA_LmlNrd6SU5FYMR-rtiXJ5KSVjGPc5zpAPI2fjcZqxH8_TNPbV2bhOM_q_5J8tGvDuBBQXK9T24P_YfgMqvpj1</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Krondorfer, Johannes K.</creator><creator>Binder, Christian W.</creator><creator>Hauser, Andreas W.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2727-3861</orcidid><orcidid>https://orcid.org/0009-0009-5006-6319</orcidid><orcidid>https://orcid.org/0000-0001-6918-3106</orcidid></search><sort><creationdate>20230707</creationdate><title>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</title><author>Krondorfer, Johannes K. ; Binder, Christian W. ; Hauser, Andreas W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6a6bd8ff869243dae4aedaa4b2d1b7442a86bf7797c2bb994ed2f9472dcc6e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Biological Transport</topic><topic>Diffusion</topic><topic>Gas transport</topic><topic>Gaussian process</topic><topic>Graphene</topic><topic>Learning</topic><topic>Physics</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Potential energy</topic><topic>Symmetry</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krondorfer, Johannes K.</creatorcontrib><creatorcontrib>Binder, Christian W.</creatorcontrib><creatorcontrib>Hauser, Andreas W.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krondorfer, Johannes K.</au><au>Binder, Christian W.</au><au>Hauser, Andreas W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-07-07</date><risdate>2023</risdate><volume>159</volume><issue>1</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37417752</pmid><doi>10.1063/5.0154989</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2727-3861</orcidid><orcidid>https://orcid.org/0009-0009-5006-6319</orcidid><orcidid>https://orcid.org/0000-0001-6918-3106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-07, Vol.159 (1)
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_37417752
source Alma/SFX Local Collection; AIP Journals (American Institute of Physics)
subjects Adsorption
Algorithms
Biological Transport
Diffusion
Gas transport
Gaussian process
Graphene
Learning
Physics
Porosity
Porous materials
Potential energy
Symmetry
Transport phenomena
title Symmetry- and gradient-enhanced Gaussian process regression for the active learning of potential energy surfaces in porous materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry-%20and%20gradient-enhanced%20Gaussian%20process%20regression%20for%20the%20active%20learning%20of%20potential%20energy%20surfaces%20in%20porous%20materials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Krondorfer,%20Johannes%20K.&rft.date=2023-07-07&rft.volume=159&rft.issue=1&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0154989&rft_dat=%3Cproquest_pubme%3E2834319280%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834319280&rft_id=info:pmid/37417752&rfr_iscdi=true